YAN Jing, CAI Yixi, XUE Qiuyan, et al. Effects of Different Treatments on Nutritional Composition and Antioxidant Activity of Rice Buckwheat[J]. Science and Technology of Food Industry, 2022, 43(5): 121−129. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070103.
Citation: YAN Jing, CAI Yixi, XUE Qiuyan, et al. Effects of Different Treatments on Nutritional Composition and Antioxidant Activity of Rice Buckwheat[J]. Science and Technology of Food Industry, 2022, 43(5): 121−129. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070103.

Effects of Different Treatments on Nutritional Composition and Antioxidant Activity of Rice Buckwheat

More Information
  • Received Date: July 07, 2021
  • Available Online: December 23, 2021
  • In order to study the influence of different treatment methods on the nutritional composition and biological activity of rice buckwheat, germination, fermentation, steaming and fermentation after steaming on the reducing sugar, protein, free amino acids, γ-aminobutyric acid, total phenol, total flavonoids and antioxidant activity. The results showed that after four treatments the content of total polyphenols, total flavonoids, scavenging DPPH free radicals and iron ion reduction ability of rice buckwheat were higher than that of untreated rice buckwheat, while after steamed processing the content of reducing sugar, γ-aminobutyric acid and rutin decreased compared with untreated rice buckwheat. By correlation analysis, the contents of total phenols and total flavonoids were significantly correlated with DPPH free radical scavenging ability and iron ion reducing ability (P<0.01). Among then, the raw rice buckwheat was the best treated by fermentation of lactic acid bacteria, with the highest content of reducing sugar, γ-aminobutyric acid, total phenol, total flavonoids, rutin, respectively, 3.62%, 4.84 mg/g, 13.63 mg/g, 4.63%, 39.80 mg/g and DPPH radical scavenging ability andiron ion reduction ability were the strongest. Therefore, fermentation treatment is a good processing method, which can further improve the nutritional composition and biological activity of rice buckwheat, and can provide a reference for the deep processing and high-value utilization of rice buckwheat.
  • [1]
    王自芬. “西盟米荞”产业开发现状与市场前景[J]. 农民致富之友,2017(2):37−38. [WANG Z F. Present situation and market prospect of "Rice Buckwheat in Western League" industry[J]. Friends of Farmers,2017(2):37−38. doi: 10.3969/j.issn.1003-1650.2017.02.034
    [2]
    张林福. 西盟米荞生产发展及效益分析[J]. 云南农业,2009(4):20−21. [ZHANG L F. Development and benefit analysis of Ximeng rice buckwheat production[J]. Yunnan Agriculture,2009(4):20−21. doi: 10.3969/j.issn.1005-1627.2009.04.019
    [3]
    ZHU F. Chemical composition and health effects of tartary buckwheat[J]. Food Chemistry,2016,203(15):231−245.
    [4]
    SKRABANJA V, LAERKE H N, KERFT I. Effects of hydrothermal processing of buckwheat (Fagopyrum esculentum Moench) groats on starch enzymatic availability in vitro and in vivo in rats[J]. Springer Berlin Heidelberg, 1998, 28(2).
    [5]
    童晓萌, 柴春祥, 王永强. 萌发对苦荞籽粒品质的影响及工艺优化[J]. 食品与机械,2021,37(4):176−183. [TONG X M, CAI C X, WANG Y Q. Effect of germination on grain quality and process optimization of rice buckwheat[J]. Food and Machinery,2021,37(4):176−183.
    [6]
    陈江. 黑曲霉固态发酵对苦荞叶抗氧化活性及其化学成分的影响[D]. 成都: 四川师范大学, 2017.

    CHEN J. Effects of aspergillus niger solid state fermentation on antioxidant activity and chemical composition of tartary buckwheat leaves[D]. Chengdu: Sichuan Normal University, 2017.
    [7]
    马艺超. 不同热加工对苦荞制品功能成分、质构及体外消化的影响[D]. 沈阳: 沈阳农业大学, 2019.

    MA Y C. Effects of different heat processing on functional composition, structure and in vitro digestion of tartary buckwheat products[D]. Shenyang: Shenyang Agricultural University, 2019.
    [8]
    TIAN W N, DAI L W, LU S M, et al. Effect of Bacillus sp. DU-106 fermentation on Dendrobium officinale polysaccharide: Structure and immunoregulatory activities[J]. International Journal of Biological Macromolecules,2019,135:1034−1042. doi: 10.1016/j.ijbiomac.2019.05.203
    [9]
    HUANG J Z, XIAO N, SUN Y Y, et al. Supplementation of Bacillus sp. DU-106 reduces hypercholesterolemia and ameliorates gut dysbiosis in high-fat diet rats[J]. Applied Microbiology and Biotechnology,2021,105(12):1−13.
    [10]
    周一鸣, 崔琳琳, 王宏, 等. 苦荞在萌发过程中营养物质的变化及其营养评价[J]. 食品科学,2014,35(13):208−212. [ZHOU Y M, CUI L L, WANG H, et al. Nutrient changes and nutritional evaluation of tartary buckwheat during germination[J]. Food Science,2014,35(13):208−212. doi: 10.7506/spkx1002-6630-201413040
    [11]
    王钦权, 翁佳妍, 黄诚, 等. 凯氏定氮法和杜马斯燃烧法测定食品中蛋白质含量的比较研究[J]. 轻工科技,2014,30(3):13−14. [WANG Q Q, WENG J Y, HUANG C, et al. Comparative study on determination of protein content in food by nitrogen and Dumas combustion[J]. Guangxi Journal of Light Industry,2014,30(3):13−14.
    [12]
    范霞, 徐廷, 刘程, 等. 藤茶γ-氨基丁酸含量测定方法研究[J]. 湖北农业科学,2016,55(13):3453−3455. [FAN X, XU T, LIU C, et al. Determination of the γ-aminobutyric acid in Ampelopsis grossedentata[J]. Hubei Agricultural Sciences,2016,55(13):3453−3455.
    [13]
    迟明艳, 李光芳, 刘丽娜. 黔产荞麦黄酮类成分的含量测定与分析[J]. 中国药房,2016,27(21):2969−2972. [CHI M Y, LI G F, LIU L N. Content determination and analysis of flavonoids in buckwheat from Guizhou province[J]. China Dispensary,2016,27(21):2969−2972. doi: 10.6039/j.issn.1001-0408.2016.21.28
    [14]
    杨红叶, 柴岩, 黄忠民, 等. 溶剂与提取方式对苦荞提取液抗氧化性能的影响[J]. 中国食品学报,2011,11(1):28−33. [YANG H Y, CHAI Y, HUANG Z M. Effects of extraction solvents and methods on antioxidant activity of tartary buckwheat bran extracts[J]. Chinese Journal of Food Science,2011,11(1):28−33. doi: 10.3969/j.issn.1009-7848.2011.01.005
    [15]
    赵武, 邱明阳, 周东月, 等. 五味子糖蛋白的纯化及其抗氧化活性[J]. 食品工业科技,2018,39(1):241−246,322. [ZHAO W, QIU M Y, ZHOU D Y. Purification and antioxidant activity of glycoprotein from Schisandra chinensis[J]. Science and Technology of Food Industry,2018,39(1):241−246,322.
    [16]
    郑丽娜, 赵莹. 绿豆发芽过程中营养成分的变化[J]. 中国农学通报,2008,24(2):125−128. [ZHENG L N, ZHAO Y. The contents changes of nutritional composition during mung bean germination[J]. Chinese Agricultural Science Bulletin,2008,24(2):125−128.
    [17]
    王清爽. 乳酸菌发酵对薏米营养和理化性质的影响[D]. 淮安: 淮阴工学院, 2020.

    WANG Q S. Effects of lactic acid bacteria fermentation on nutrition and physicochemical properties of barley[D]. Huaian: Huaiyin Institute of Technology, 2020.
    [18]
    雷焕娜, 李彦, 曹忠娜, 等. 烹饪方式对甘薯营养成分的影响[J]. 食品研究与开发,2019,40(21):27−31,61. [LEI H N, LI Y, CAO Z N, et al. Effects of cooking methods on the nutritional content of sweet potato[J]. Food Research and Development,2019,40(21):27−31,61.
    [19]
    SMITH G N, EMMANUEL A, ELIJAH H K, et al. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes[J]. Food Science & Nutrition,2018,6(8):2446−2458.
    [20]
    LEE C K, KARUNANITY R. Effects of germination on the chemical composition of glycine and Phaseolus beans[J]. Journal of the Science of Food and Agriculture,2010,51(4):437−445.
    [21]
    延莎, 邢洁雯, 王晓闻. 不同菌种发酵对藜麦蛋白质特性及脂质构成的影响[J]. 中国农业科学,2020,53(10):2045−2054. [YAN S, XING J W, WANG X W. Effects of different strain fermentation on protein hydrolysis and lipid profile of quinoa[J]. Scientia Agricultura Sinica,2020,53(10):2045−2054. doi: 10.3864/j.issn.0578-1752.2020.10.011
    [22]
    靳颖. 大豆在发芽过程中抗原蛋白和营养特性变化及应用[D]. 郑州: 郑州轻工业大学, 2020.

    JIN Y. Changes and application of antigenic protein and nutrition characteristics of soybean[D]. Zhengzhou: Zhengzhou University of Light Industry, 2020.
    [23]
    IBEGBULEM C O, IGWE C U, OKWU G N, et al. Total amino acid profiles of heat-processed fresh Elaeis guineensis and Raphia hookeri wines[J]. Food Chemistry,2013,138(2-3):1616−1620. doi: 10.1016/j.foodchem.2012.11.110
    [24]
    刘磊, 冉玉兵, 张名位, 等. 乳酸菌发酵对脱脂米糠营养成分的影响[J]. 中国食品学报,2020,20(1):118−126. [LIU L, RAN Y B, ZHANG M W, et al. Effect of lactic acid bacteria fermentation on nutritional component of defatted rice bran[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(1):118−126.
    [25]
    LI L, DOU N, ZHANG H, et al. The versatile GABA in plants[J]. Plant Signaling & Behavior, 2021, 16(3).
    [26]
    范军, 栗尤祥, 郭小云, 等. 发芽糙米抗氧化活性在发芽及干燥过程中的变化研究[J]. 农产品加工(学刊),2012(9):34−36. [FAN J, LI Y X, GUO X Y, et al. The antioxidative activity of germinated brown rice during germination and drying[J]. Academic Periodical of Farm Products Processing,2012(9):34−36.
    [27]
    周玉龙, 贾富国, 张强, 等. 贮藏温湿度对糙米平衡含水率的影响[J]. 中国粮油学报,2011,26(12):78−82. [ZHOU Y L, JIA F G, ZHANG Q, et al. Effect of storage temperature and humidity on equilibrium moisture content of brown rice[J]. Journal of the Chinese Cereals and Oils Association,2011,26(12):78−82.
    [28]
    李志江, 关琛, 翟爱华, 等. 糙米酵素发酵工艺对γ-氨基丁酸和谷胱甘肽含量影响研究[J]. 农产品加工(学刊),2014(1):6−8,11. [LI Z J, GUAN C, HUO A H, et al. Effect of brown rice fermentation on γ-Content of aminobutyrate and glutathione[J]. Agricultural Products Processing (Journal Journal),2014(1):6−8,11.
    [29]
    孙丹, 黄士淇, 蔡圣宝. 不同加工方式对苦荞中总酚、总黄酮及抗氧化性的影响[J]. 食品与发酵工业,2016,42(1):141−147. [SUN D, HUANG S Q, CAI S B. Effects of different processing methods on total phenol, total flavonoids and antioxidant properties of tartary buckwheat[J]. Food and Fermentation Industry,2016,42(1):141−147.
    [30]
    SINGH K, KUMAR S, RANI A, et al. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea[J]. Functional & Integrative Genomics,2009,9(1):125−134.
    [31]
    WANG L, LI X, NIU M, et al. Effect of additives on flavonoids, D-chiro-Inositol and trypsin inhibitor during the germination of tartary buckwheat seeds[J]. Journal of Cereal Science,2013,58(2):348−354. doi: 10.1016/j.jcs.2013.07.004
    [32]
    崔江明, 周海龙, 马利华. 发芽、发酵对燕麦营养性及抗氧化性的影响[J]. 食品科技,2021,46(2):130−134. [CUI J M, ZHOU H L, MA L H. Effects of germination and fermentation on nutritional and antioxidant properties of oats[J]. Food Technology,2021,46(2):130−134.
    [33]
    翟玮玮. 萌发谷物中多酚类物质与苯丙氨酸解氨酶的研究进展[J]. 食品工业科技,2010,31(8):370−372,376. [CUI W W. Research progress of phenolic compounds and phenylalanine ammonia-lyase in pre-germinated grains[J]. Science and Technology of Food Industry,2010,31(8):370−372,376.
    [34]
    DANIELS D, MARTIN H F. Antioxidants in oats: Glyceryl esters of caffeic and ferulic acids[J]. Journal of the Science of Food and Agriculture,1968,19(12):710−712. doi: 10.1002/jsfa.2740191206
    [35]
    DONA A M. Enhancing antioxidant activity and extractability of bioactive compounds of wheat bran using thermal treatments[D]. Manitoba: University of Manitoba, 2011
    [36]
    PRADEE S R, MANISHA G. Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts[J]. Food Chemistry,2011,126(4):1643−1647. doi: 10.1016/j.foodchem.2010.12.047
    [37]
    赵彤, 钟宜科, 荀一萍, 等. 乳酸菌抗氧化性及其作用机制研究进展[J]. 中国食品添加剂,2018(9):202−209. [ZHAO T, ZHONG Y K, XUN Y P, et al. Research progress on antioxidation and regulation mechanism of lactic acid bacteria[J]. China Food Additives,2018(9):202−209. doi: 10.3969/j.issn.1006-2513.2018.09.025
    [38]
    范昊安, 沙如意, 方晟, 等. 苹果梨酵素发酵过程中的褐变与抗氧化活性[J]. 食品科学,2020,41(14):116−123. [FAN H A, SHA R Y, FANG S, et al. Browning and antioxidant activity of apple-pear Jiaosu during fermentation[J]. Food Science,2020,41(14):116−123. doi: 10.7506/spkx1002-6630-20190515-151
    [39]
    JIN Y J, PYO Y H. Effect of monascus-fermented soybean extracts on antioxidant and skin aging-related enzymes inhibitory activities[J]. Preventive Nutrition & Food Science,2017,22(4):376−380.
  • Cited by

    Periodical cited type(4)

    1. 唐佳代,石雨菲,赵益梅,王怡,冷枝,郭敏,孟卓妮,杨亮. 不同感官特性酱香型大曲理化指标与霉菌群落关联分析. 食品工业科技. 2024(03): 153-161 . 本站查看
    2. 王洋,谢菲,杜礼泉,范昌明,冯波. 酿酒专用小麦大曲中挥发性风味成分与微生物群落相关性分析. 中国酿造. 2024(02): 71-81 .
    3. 韩冰玙,陈辉太,李宗军. 酱、浓、清香型白酒酿造过程中真菌及其功能特性研究进展. 中国酿造. 2024(03): 27-32 .
    4. 宋文霞,徐媛媛,韩小龙,李桂菊,成冬冬,林范学,秦宏伟. 人工窖泥在浓香型白酒酿造中微生物群落结构的变化. 食品科技. 2024(06): 40-46 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (204) PDF downloads (20) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return