Citation: | TANG Xingnan, LUAN Kaiwen, WANG Rongxiang, et al. Optimization of Microwave-assisted Extraction of Total Glycosides from Moringa oleifera Seeds and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(4): 246−253. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070078. |
[1] |
YANG L, WANG X Y, WEI X M, et al. Values, properties and utility of different parts of Moringa oleifera: An overview[J]. Chinese Herbal Medicines,2018,10(4):371−378. doi: 10.1016/j.chmed.2018.09.002
|
[2] |
汪泰, 顾文宏, 何军, 等. 辣木新资源食品研究进展[J]. 食品工业科技,2017(8):364−368. [WANG T, GU W H, HE J, et al. Research progress on new resource food of Moringa oleifera[J]. Science and Technology of Food Industry,2017(8):364−368.
|
[3] |
ALESSANDRO L, ALBERTO S, ALBERTO B, et al. Moringa oleifera seeds and oil: Characteristics and uses for human health[J]. International Journal of Molecular Sciences,2016,17(12):2−14.
|
[4] |
FALOWO A B, MUKUMBO F E, IDAMOKOROI M, et al. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review[J]. Food Research International,2018,160:317−334.
|
[5] |
张彦平, 孙雪萌, 陈磊. 辣木籽絮凝活性成分提取及除浊效果研究[J]. 水处理技术,2020,46(2):29−32. [ZHANG Y P, SUN X M, CHEN L. Study on the extraction and turbidity removal of active components from Moringa oleifera seed flocculation[J]. Water Treatment Technology,2020,46(2):29−32.
|
[6] |
严铭, 张饮江, 朱昱丞, 等. 辣木籽去除水中余氯研究[J]. 水生态学杂志,2019,40(1):99−103. [YAN M, ZHANG Y J, ZHU Y C, et al. Study on removal of residual chlorine from water by Moringa oleifera seed[J]. Journal of Water Ecology,2019,40(1):99−103.
|
[7] |
杨迎. 辣木籽营养成分分析及其生物活性研究[D]. 上海: 上海交通大学, 2018.
YANG Y. Analysis of nutrient components and bioactivity of Moringa oleifera seed[D]. Shanghai: Shanghai Jiao Tong University, 2018.
|
[8] |
康强荣. 辣木籽化学成分及其调控内源细胞因子TNF-α活性研究[D]. 深圳: 深圳大学, 2018.
KANG Q R. Study on chemical constituents of Moringa oleifera seed and its regulation on the activity of endogenous cytokine TNF-α[D]. Shenzhen: Shenzhen University, 2018.
|
[9] |
WANWISA W, SUNCHAI P, JIRAPHORN I A, et al. Inhibitory effects of crude extracts from some edible thai plants against replication of hepatitis B virus and human liver cancer cells[J]. Bmc Complementary and Alternative Medicine,2012,12(1):246−246. doi: 10.1186/1472-6882-12-246
|
[10] |
虎虓真, 陶宁萍, 许长华. 基于食药价值的辣木籽研究进展[J]. 食品科学,2018,39(15):302−309. [HU X Z, TAO N P, XU C H. Research progress of Moringa oleifera seed based on food and medicine value[J]. Food Science,2018,39(15):302−309. doi: 10.7506/spkx1002-6630-201815044
|
[11] |
LAKSHMIPRIYA G, KRUTHI D, DEVARAI S K. Moringa oleifera: A review on nutritive importance and its medicinal application[J]. Food Science and Human Wellness,2016,5(2):49−56. doi: 10.1016/j.fshw.2016.04.001
|
[12] |
MOHSEN M, GHOLAMREZA A, DIANA T, et al. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats[J]. Avicenna Journal of Phytomedicine,2014,4(2):127−136.
|
[13] |
林恋竹, 朱启源, 赵谋明. 辣木籽抗氧化肽的制备及其对氧化损伤红细胞的保护作用[J]. 食品科学,2019,40(7):40−46. [LIN L Z, ZHU Q Y, ZHAO M M. Preparation of antioxidant peptides from Moringa oleifera seeds and their protective effects on oxidative damage of red blood cells[J]. Food Science,2019,40(7):40−46. doi: 10.7506/spkx1002-6630-20180319-241
|
[14] |
杜尊众, 吴晓棽, 余海林, 等. 辣木籽水提液的提取工艺优化与抗氧化活性研究[J]. 湖北大学学报,2020,42(1):84−87. [DU Z Z, WU X Q, YU H L, et al. Study on extraction process optimization and antioxidant activity of Moringa oleifera seed water extract[J]. Journal of Hubei University,2020,42(1):84−87.
|
[15] |
王云龙, 房岐, 郑超. 辣木籽化学成分, 药理作用及开发利用研究进展[J]. 中医药信息,2020,213(3):130−133. [WANG Y L, FANG Q, ZHENG C. Research progress on chemical constituents, pharmacological effects and development and utilization of Moringa oleifera seeds[J]. Information on Traditional Chinese Medicine,2020,213(3):130−133.
|
[16] |
SWATI G, ROHIT J, SUMITA K, et al. Nutritional and medicinal applications of Oringa oleifera Lam. —review of current status and future possibilities[J]. Journal of Herbal Medicine,2017,11:1−11.
|
[17] |
DHAKAD A K, IKRAM M, SHARMA S, et al. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam[J]. Phytotherapy Research,2019,33(11):2870−2903. doi: 10.1002/ptr.6475
|
[18] |
黄颖, 谭书明, 陈小敏, 等. 辣木籽多酚提取工艺优化及解酒功效研究[J]. 食品科技,2019,332(6):253−260. [HUANG Y, TAN S M, CHEN X M, et al. Optimization of extraction technology of polyphenols from Moringa oleifera seed and its antialcoholic efficacy[J]. Food Science and Technology,2019,332(6):253−260.
|
[19] |
王丽虹, 许悦, 刘阳. 辣木籽中活性物质及其生理功能研究进展[J]. 食品研究与开发,2019,40(4):198−203. [WANG L H, XU Y, LIU Y. Research progress on active substances and physiological functions in Moringa oleifera seeds[J]. Food Research and Development,2019,40(4):198−203.
|
[20] |
杨迎, 谢凡, 龚胜祥, 等. 响应面法优化辣木籽多酚提取工艺及其抗氧化活性[J]. 食品工业科技,2018,39(3):172−178. [YANG Y, XIE F, GONG S X, et al. Optimization of extraction process and antioxidant activity of polyphenols from Moringa oleifera seeds by response surface methodology[J]. Science and Technology of Food Industry,2018,39(3):172−178.
|
[21] |
LIN M, ZHANG J, CHEN X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties[J]. Journal of Functional Foods,2018,47:469−479. doi: 10.1016/j.jff.2018.06.011
|
[22] |
TATINE L C, NATHALIE M, TATINE C B, et al. Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil[J]. Food Research International,2020,141:110082.
|
[23] |
刘玲翠, 张熹晗, 马璇, 等. 响应曲面法优化结球菊苣总苷的微波提取工艺[J]. 食品工业,2018,39(5):114−118. [LIU L C, ZHANG X H, MA X, et al. Optimization of microwave-assisted extraction of total glycosides from chicory by response surface methodology[J]. Food Industry,2018,39(5):114−118.
|
[24] |
MOYO B, OYEDEMI S, MASKIA P J, et al. Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake[J]. Meat Science,2012,91(4):441−447. doi: 10.1016/j.meatsci.2012.02.029
|
[25] |
RAHMAWATI I, FACHIR B A, MANURUNG Y H, et al. Application of response surface methodology in optimization condition of anthocyanin extraction process of cocoa peel waste with microwave assisted extraction method (MAE)[J]. IOP Conference Series: Earth and Environmental Science,2021,743(1):12091. doi: 10.1088/1755-1315/743/1/012091
|
[26] |
刘帅, 高丽莉, 潘丹阳, 等. 微波辅助提取薏苡仁油工艺优化[J]. 食品工业科技,2019,40(8):145−150. [LIU S, GAO L L, PAN D Y, et al. Optimization of microwave-assisted extraction of coix seed oil[J]. Science and Technology of Food Industry,2019,40(8):145−150.
|
[27] |
PRAJYA A, PRADYUMAN K. Comparison of ultrasound and microwave assisted extraction of diosgenin from Trigonella foenum graceum seed[J]. Ultrasonics Sonochemistry,2021,74(3):105572.
|
[28] |
薛宏坤, 谭佳琪, 蔡旭, 等. 微波功率对蔓越莓花色苷萃取过程的影响机理[J/OL]. 食品科学: 1−15[2021-11-24]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210115.1443.031.html.
XUE H K, TAN J Q, CAI X, et al. Effect of microwave power on the extraction process of anthocyanins from cranberry[J/OL]. Food Science: 1−15[2021-11-24]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210115.1443.031.html.
|
[29] |
MIRCEA V, TIMOTHY J M, IOAN C. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials[J]. TrAC Trends in Analytical Chemistry,2017,97:159−178. doi: 10.1016/j.trac.2017.09.002
|
[30] |
BOUCHRA D, FOUZ H B, MOHAMED C, et al. Microwave assisted extraction of bioactive saponins from the starfish Echinaster sepositus: Optimization by response surface methodology and comparison with ultrasound and conventional solvent extraction-siencedirect[J]. Chemical Engineering and Processing-Process Intensification,2021,163:108359. doi: 10.1016/j.cep.2021.108359
|
[31] |
CHAN C H, ROZITA Y, NGOH G C, et al. Microwave-assisted extractions of active ingredients from plants[J]. J CHROMATOGR A,2011,1218(37):6213−6225. doi: 10.1016/j.chroma.2011.07.040
|
[32] |
ÁNGEL M, ALEXANDER N. Microwave-assisted process intensification techniques[J]. Current Opinion in Green and Sustainable Chemistry,2018,11:70−75. doi: 10.1016/j.cogsc.2018.04.019
|
[33] |
陈灿辉, 林彤, 江文韬, 等. 响应面法优化笋头多糖微波-超声波辅助提取工艺[J]. 食品工业科技,2020,41(16):201−206. [CHEN C H, LIN T, JIANG W T, et al. Optimization of microwave-ultrasonic assisted extraction of polysaccharide from bamboo shoot head by response surface methodology[J]. Science and Technology of Food Industry,2020,41(16):201−206.
|
[34] |
SIMONA M N, ORSTA V. Evaluation of a microwave-assisted extraction method for lignan quantification in flaxseed cultivars and selected oil seeds[J]. Food Analytical Methods,2012,5(3):551−563. doi: 10.1007/s12161-011-9281-6
|
[1] | LÜ Mingshou, WANG Zihan, LIU Linlin, SUN Bingyu, ZHU Ying, HUANG Yuyang, QU Min, ZHU Xiuqing. Effects of Different Concentrations of Carrageenan on the Gel Properties and Structure of Hemp Protein Isolate[J]. Science and Technology of Food Industry, 2024, 45(12): 28-37. DOI: 10.13386/j.issn1002-0306.2023050357 |
[2] | HE Shan, WANG Yusu, ZHANG Shuo, JIN Lei, ZHA Enhui. Effect of Cooking Pressure and Holding Time on the Structure of Chicken Myofibrillar Protein[J]. Science and Technology of Food Industry, 2024, 45(10): 25-31. DOI: 10.13386/j.issn1002-0306.2023050136 |
[3] | HUANG Jinian, SUN Qiang, ZHANG Fuzhong, SONG Guohui, ZHANG Guozhi. Influence of Extrusion Texturization on the Physical and Chemical Properties and Structure of Sesame Protein[J]. Science and Technology of Food Industry, 2023, 44(2): 60-68. DOI: 10.13386/j.issn1002-0306.2022020142 |
[4] | XIONG Wenfei, LI Ya, WANG Lifeng. Electrostatic Interaction of Ovalbumin-Chitosan on the Effects of Protein Structure and Thermal Properties[J]. Science and Technology of Food Industry, 2021, 42(24): 55-59. DOI: 10.13386/j.issn1002-0306.2021040087 |
[5] | SUN Hong, YANG Xiao-ming. Effect of Glycosylation Reaction on Immunogenicity and Structure of Ginkgo Seed Protein[J]. Science and Technology of Food Industry, 2019, 40(15): 14-19. DOI: 10.13386/j.issn1002-0306.2019.15.003 |
[6] | ZENG Chao-wei, SUN Jing, MA Hui-jiao, GUO Jia-jun, GUO Hong-wei, ZHANG Zhong. Purification and Enzymatic Structure Analysis of Cortex-lytic Enzyme from Bacillus subtilis Spores[J]. Science and Technology of Food Industry, 2019, 40(9): 160-165,223. DOI: 10.13386/j.issn1002-0306.2019.09.028 |
[7] | WEI Su-meng, YOU Yuan, YANG Yu-ling, ZHOU Lei, LI Shan-shan, WANG Jing-yu. Effect of Oxidation on Rheological Properties and Structure of Myofibrillar Protein[J]. Science and Technology of Food Industry, 2019, 40(9): 29-33. DOI: 10.13386/j.issn1002-0306.2019.09.006 |
[8] | CHEN Li-yan, PAN Dao-dong, LUO Hong-lin, ZHOU Chang-yu, CAO Jin-xuan, SUN Yang-ying. Effect of distilled spirit marination on myofibrillar structure and tasted compounds of vinasse goose[J]. Science and Technology of Food Industry, 2017, (12): 81-86. DOI: 10.13386/j.issn1002-0306.2017.12.015 |
[9] | KANG Zhuang-li, LI Xiang, LI Bin, WANG Hu-hu, MA Han-jun, SONG Zhao-jun, YU Xiao-ling, PAN Run-shu. Effect of transglutaminase on water holding capacity and protein secondary structure of low-salt chicken batters[J]. Science and Technology of Food Industry, 2016, (20): 130-133. DOI: 10.13386/j.issn1002-0306.2016.20.017 |
[10] | ZHAO Run-ze, JIANG Jiang, LI Jin-wei, LIU Yuan-fa. Influence of roast processing on secondary structure,surface hydrophobicity and emulsifying properties of walnut protein[J]. Science and Technology of Food Industry, 2016, (16): 157-160. DOI: 10.13386/j.issn1002-0306.2016.16.023 |