TANG Xingnan, LUAN Kaiwen, WANG Rongxiang, et al. Optimization of Microwave-assisted Extraction of Total Glycosides from Moringa oleifera Seeds and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(4): 246−253. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070078.
Citation: TANG Xingnan, LUAN Kaiwen, WANG Rongxiang, et al. Optimization of Microwave-assisted Extraction of Total Glycosides from Moringa oleifera Seeds and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(4): 246−253. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070078.

Optimization of Microwave-assisted Extraction of Total Glycosides from Moringa oleifera Seeds and Its Antioxidant Activity

More Information
  • Received Date: July 06, 2021
  • Available Online: December 12, 2021
  • In order to effectively utilize and develop Moringa oleifera seeds, the glycosides in Moringa oleifera seeds were extracted by microwave-assisted method with ethanol as solvent. Based on the single factor experiment, the extraction process was optimized by response surface methodology. The antioxidant activities in vitro of each polar part of the optimized Moringa oleifera seeds extract were determined by salicylic acid method, ABTS method and FRAP method. The results showed that the optimal extraction conditions were as follows: Ethanol volume fraction 81%, solid-liquid ratio 1:30 g/mL, extraction time 20 min, microwave power 600 W. The order of antioxidant activity in vitro was ethyl acetate>petroleum ether > n-butanol > water. The results indicated that the microwave-assisted extraction of glycosides from Moringa oleifera seeds and the optimization of the extraction process of total glycosides from Moringa oleifera seeds by response surface methodology was feasible. In vitro, antioxidant activity tests showed that the polar parts of ethanol extracts of Moringa oleifera seeds had free radical scavenging ability, which laid a foundation for the further development of natural antioxidants.
  • [1]
    YANG L, WANG X Y, WEI X M, et al. Values, properties and utility of different parts of Moringa oleifera: An overview[J]. Chinese Herbal Medicines,2018,10(4):371−378. doi: 10.1016/j.chmed.2018.09.002
    [2]
    汪泰, 顾文宏, 何军, 等. 辣木新资源食品研究进展[J]. 食品工业科技,2017(8):364−368. [WANG T, GU W H, HE J, et al. Research progress on new resource food of Moringa oleifera[J]. Science and Technology of Food Industry,2017(8):364−368.
    [3]
    ALESSANDRO L, ALBERTO S, ALBERTO B, et al. Moringa oleifera seeds and oil: Characteristics and uses for human health[J]. International Journal of Molecular Sciences,2016,17(12):2−14.
    [4]
    FALOWO A B, MUKUMBO F E, IDAMOKOROI M, et al. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review[J]. Food Research International,2018,160:317−334.
    [5]
    张彦平, 孙雪萌, 陈磊. 辣木籽絮凝活性成分提取及除浊效果研究[J]. 水处理技术,2020,46(2):29−32. [ZHANG Y P, SUN X M, CHEN L. Study on the extraction and turbidity removal of active components from Moringa oleifera seed flocculation[J]. Water Treatment Technology,2020,46(2):29−32.
    [6]
    严铭, 张饮江, 朱昱丞, 等. 辣木籽去除水中余氯研究[J]. 水生态学杂志,2019,40(1):99−103. [YAN M, ZHANG Y J, ZHU Y C, et al. Study on removal of residual chlorine from water by Moringa oleifera seed[J]. Journal of Water Ecology,2019,40(1):99−103.
    [7]
    杨迎. 辣木籽营养成分分析及其生物活性研究[D]. 上海: 上海交通大学, 2018.

    YANG Y. Analysis of nutrient components and bioactivity of Moringa oleifera seed[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [8]
    康强荣. 辣木籽化学成分及其调控内源细胞因子TNF-α活性研究[D]. 深圳: 深圳大学, 2018.

    KANG Q R. Study on chemical constituents of Moringa oleifera seed and its regulation on the activity of endogenous cytokine TNF-α[D]. Shenzhen: Shenzhen University, 2018.
    [9]
    WANWISA W, SUNCHAI P, JIRAPHORN I A, et al. Inhibitory effects of crude extracts from some edible thai plants against replication of hepatitis B virus and human liver cancer cells[J]. Bmc Complementary and Alternative Medicine,2012,12(1):246−246. doi: 10.1186/1472-6882-12-246
    [10]
    虎虓真, 陶宁萍, 许长华. 基于食药价值的辣木籽研究进展[J]. 食品科学,2018,39(15):302−309. [HU X Z, TAO N P, XU C H. Research progress of Moringa oleifera seed based on food and medicine value[J]. Food Science,2018,39(15):302−309. doi: 10.7506/spkx1002-6630-201815044
    [11]
    LAKSHMIPRIYA G, KRUTHI D, DEVARAI S K. Moringa oleifera: A review on nutritive importance and its medicinal application[J]. Food Science and Human Wellness,2016,5(2):49−56. doi: 10.1016/j.fshw.2016.04.001
    [12]
    MOHSEN M, GHOLAMREZA A, DIANA T, et al. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats[J]. Avicenna Journal of Phytomedicine,2014,4(2):127−136.
    [13]
    林恋竹, 朱启源, 赵谋明. 辣木籽抗氧化肽的制备及其对氧化损伤红细胞的保护作用[J]. 食品科学,2019,40(7):40−46. [LIN L Z, ZHU Q Y, ZHAO M M. Preparation of antioxidant peptides from Moringa oleifera seeds and their protective effects on oxidative damage of red blood cells[J]. Food Science,2019,40(7):40−46. doi: 10.7506/spkx1002-6630-20180319-241
    [14]
    杜尊众, 吴晓棽, 余海林, 等. 辣木籽水提液的提取工艺优化与抗氧化活性研究[J]. 湖北大学学报,2020,42(1):84−87. [DU Z Z, WU X Q, YU H L, et al. Study on extraction process optimization and antioxidant activity of Moringa oleifera seed water extract[J]. Journal of Hubei University,2020,42(1):84−87.
    [15]
    王云龙, 房岐, 郑超. 辣木籽化学成分, 药理作用及开发利用研究进展[J]. 中医药信息,2020,213(3):130−133. [WANG Y L, FANG Q, ZHENG C. Research progress on chemical constituents, pharmacological effects and development and utilization of Moringa oleifera seeds[J]. Information on Traditional Chinese Medicine,2020,213(3):130−133.
    [16]
    SWATI G, ROHIT J, SUMITA K, et al. Nutritional and medicinal applications of Oringa oleifera Lam. —review of current status and future possibilities[J]. Journal of Herbal Medicine,2017,11:1−11.
    [17]
    DHAKAD A K, IKRAM M, SHARMA S, et al. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam[J]. Phytotherapy Research,2019,33(11):2870−2903. doi: 10.1002/ptr.6475
    [18]
    黄颖, 谭书明, 陈小敏, 等. 辣木籽多酚提取工艺优化及解酒功效研究[J]. 食品科技,2019,332(6):253−260. [HUANG Y, TAN S M, CHEN X M, et al. Optimization of extraction technology of polyphenols from Moringa oleifera seed and its antialcoholic efficacy[J]. Food Science and Technology,2019,332(6):253−260.
    [19]
    王丽虹, 许悦, 刘阳. 辣木籽中活性物质及其生理功能研究进展[J]. 食品研究与开发,2019,40(4):198−203. [WANG L H, XU Y, LIU Y. Research progress on active substances and physiological functions in Moringa oleifera seeds[J]. Food Research and Development,2019,40(4):198−203.
    [20]
    杨迎, 谢凡, 龚胜祥, 等. 响应面法优化辣木籽多酚提取工艺及其抗氧化活性[J]. 食品工业科技,2018,39(3):172−178. [YANG Y, XIE F, GONG S X, et al. Optimization of extraction process and antioxidant activity of polyphenols from Moringa oleifera seeds by response surface methodology[J]. Science and Technology of Food Industry,2018,39(3):172−178.
    [21]
    LIN M, ZHANG J, CHEN X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties[J]. Journal of Functional Foods,2018,47:469−479. doi: 10.1016/j.jff.2018.06.011
    [22]
    TATINE L C, NATHALIE M, TATINE C B, et al. Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil[J]. Food Research International,2020,141:110082.
    [23]
    刘玲翠, 张熹晗, 马璇, 等. 响应曲面法优化结球菊苣总苷的微波提取工艺[J]. 食品工业,2018,39(5):114−118. [LIU L C, ZHANG X H, MA X, et al. Optimization of microwave-assisted extraction of total glycosides from chicory by response surface methodology[J]. Food Industry,2018,39(5):114−118.
    [24]
    MOYO B, OYEDEMI S, MASKIA P J, et al. Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake[J]. Meat Science,2012,91(4):441−447. doi: 10.1016/j.meatsci.2012.02.029
    [25]
    RAHMAWATI I, FACHIR B A, MANURUNG Y H, et al. Application of response surface methodology in optimization condition of anthocyanin extraction process of cocoa peel waste with microwave assisted extraction method (MAE)[J]. IOP Conference Series: Earth and Environmental Science,2021,743(1):12091. doi: 10.1088/1755-1315/743/1/012091
    [26]
    刘帅, 高丽莉, 潘丹阳, 等. 微波辅助提取薏苡仁油工艺优化[J]. 食品工业科技,2019,40(8):145−150. [LIU S, GAO L L, PAN D Y, et al. Optimization of microwave-assisted extraction of coix seed oil[J]. Science and Technology of Food Industry,2019,40(8):145−150.
    [27]
    PRAJYA A, PRADYUMAN K. Comparison of ultrasound and microwave assisted extraction of diosgenin from Trigonella foenum graceum seed[J]. Ultrasonics Sonochemistry,2021,74(3):105572.
    [28]
    薛宏坤, 谭佳琪, 蔡旭, 等. 微波功率对蔓越莓花色苷萃取过程的影响机理[J/OL]. 食品科学: 1−15[2021-11-24]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210115.1443.031.html.

    XUE H K, TAN J Q, CAI X, et al. Effect of microwave power on the extraction process of anthocyanins from cranberry[J/OL]. Food Science: 1−15[2021-11-24]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210115.1443.031.html.
    [29]
    MIRCEA V, TIMOTHY J M, IOAN C. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials[J]. TrAC Trends in Analytical Chemistry,2017,97:159−178. doi: 10.1016/j.trac.2017.09.002
    [30]
    BOUCHRA D, FOUZ H B, MOHAMED C, et al. Microwave assisted extraction of bioactive saponins from the starfish Echinaster sepositus: Optimization by response surface methodology and comparison with ultrasound and conventional solvent extraction-siencedirect[J]. Chemical Engineering and Processing-Process Intensification,2021,163:108359. doi: 10.1016/j.cep.2021.108359
    [31]
    CHAN C H, ROZITA Y, NGOH G C, et al. Microwave-assisted extractions of active ingredients from plants[J]. J CHROMATOGR A,2011,1218(37):6213−6225. doi: 10.1016/j.chroma.2011.07.040
    [32]
    ÁNGEL M, ALEXANDER N. Microwave-assisted process intensification techniques[J]. Current Opinion in Green and Sustainable Chemistry,2018,11:70−75. doi: 10.1016/j.cogsc.2018.04.019
    [33]
    陈灿辉, 林彤, 江文韬, 等. 响应面法优化笋头多糖微波-超声波辅助提取工艺[J]. 食品工业科技,2020,41(16):201−206. [CHEN C H, LIN T, JIANG W T, et al. Optimization of microwave-ultrasonic assisted extraction of polysaccharide from bamboo shoot head by response surface methodology[J]. Science and Technology of Food Industry,2020,41(16):201−206.
    [34]
    SIMONA M N, ORSTA V. Evaluation of a microwave-assisted extraction method for lignan quantification in flaxseed cultivars and selected oil seeds[J]. Food Analytical Methods,2012,5(3):551−563. doi: 10.1007/s12161-011-9281-6
  • Related Articles

    [1]LÜ Mingshou, WANG Zihan, LIU Linlin, SUN Bingyu, ZHU Ying, HUANG Yuyang, QU Min, ZHU Xiuqing. Effects of Different Concentrations of Carrageenan on the Gel Properties and Structure of Hemp Protein Isolate[J]. Science and Technology of Food Industry, 2024, 45(12): 28-37. DOI: 10.13386/j.issn1002-0306.2023050357
    [2]HE Shan, WANG Yusu, ZHANG Shuo, JIN Lei, ZHA Enhui. Effect of Cooking Pressure and Holding Time on the Structure of Chicken Myofibrillar Protein[J]. Science and Technology of Food Industry, 2024, 45(10): 25-31. DOI: 10.13386/j.issn1002-0306.2023050136
    [3]HUANG Jinian, SUN Qiang, ZHANG Fuzhong, SONG Guohui, ZHANG Guozhi. Influence of Extrusion Texturization on the Physical and Chemical Properties and Structure of Sesame Protein[J]. Science and Technology of Food Industry, 2023, 44(2): 60-68. DOI: 10.13386/j.issn1002-0306.2022020142
    [4]XIONG Wenfei, LI Ya, WANG Lifeng. Electrostatic Interaction of Ovalbumin-Chitosan on the Effects of Protein Structure and Thermal Properties[J]. Science and Technology of Food Industry, 2021, 42(24): 55-59. DOI: 10.13386/j.issn1002-0306.2021040087
    [5]SUN Hong, YANG Xiao-ming. Effect of Glycosylation Reaction on Immunogenicity and Structure of Ginkgo Seed Protein[J]. Science and Technology of Food Industry, 2019, 40(15): 14-19. DOI: 10.13386/j.issn1002-0306.2019.15.003
    [6]ZENG Chao-wei, SUN Jing, MA Hui-jiao, GUO Jia-jun, GUO Hong-wei, ZHANG Zhong. Purification and Enzymatic Structure Analysis of Cortex-lytic Enzyme from Bacillus subtilis Spores[J]. Science and Technology of Food Industry, 2019, 40(9): 160-165,223. DOI: 10.13386/j.issn1002-0306.2019.09.028
    [7]WEI Su-meng, YOU Yuan, YANG Yu-ling, ZHOU Lei, LI Shan-shan, WANG Jing-yu. Effect of Oxidation on Rheological Properties and Structure of Myofibrillar Protein[J]. Science and Technology of Food Industry, 2019, 40(9): 29-33. DOI: 10.13386/j.issn1002-0306.2019.09.006
    [8]CHEN Li-yan, PAN Dao-dong, LUO Hong-lin, ZHOU Chang-yu, CAO Jin-xuan, SUN Yang-ying. Effect of distilled spirit marination on myofibrillar structure and tasted compounds of vinasse goose[J]. Science and Technology of Food Industry, 2017, (12): 81-86. DOI: 10.13386/j.issn1002-0306.2017.12.015
    [9]KANG Zhuang-li, LI Xiang, LI Bin, WANG Hu-hu, MA Han-jun, SONG Zhao-jun, YU Xiao-ling, PAN Run-shu. Effect of transglutaminase on water holding capacity and protein secondary structure of low-salt chicken batters[J]. Science and Technology of Food Industry, 2016, (20): 130-133. DOI: 10.13386/j.issn1002-0306.2016.20.017
    [10]ZHAO Run-ze, JIANG Jiang, LI Jin-wei, LIU Yuan-fa. Influence of roast processing on secondary structure,surface hydrophobicity and emulsifying properties of walnut protein[J]. Science and Technology of Food Industry, 2016, (16): 157-160. DOI: 10.13386/j.issn1002-0306.2016.16.023
  • Cited by

    Periodical cited type(4)

    1. 柳富杰,黄释慧,潘莉莉. 纳米碳酸钙表面改性沸石对模拟蔗汁中酚酸的吸附性能. 食品与机械. 2024(01): 33-39 .
    2. 玉澜,时倩倩,文胜,陈燕萌,兰兴先,蒋才云. 白云石/三聚氰胺复合材料制备及吸附结晶紫性能研究. 化学研究与应用. 2024(08): 1718-1724 .
    3. 陈燕萌,陈广成,蒋才云. 沃柑皮基活性炭的制备及其对结晶紫的吸附研究. 化学研究与应用. 2023(06): 1387-1395 .
    4. 王未君,杨博,李文林,马旋,刘昌盛. 不同种类二氧化硅的表征及其在浓香菜籽油低温吸附精炼中的应用. 食品科学. 2023(16): 1-7 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (224) PDF downloads (29) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return