Citation: | YAN Lingzhi. Research Progress of Lateral Flow Immunoassay in Food Safety[J]. Science and Technology of Food Industry, 2022, 43(4): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070031. |
[1] |
HUANG Xiaolin, ZORAIDA P Aguilar, XU Hengyi, et al. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review[J]. Biosensors & Bioelectronics,2016,75:166−180.
|
[2] |
ELIF Burcu Bahadır, MUSTAFA Kemal Sezgintürk. Lateral flow assays: Principles, designs and labels[J]. Trends in Analytical Chemistry,2016,82:286−306. doi: 10.1016/j.trac.2016.06.006
|
[3] |
KOBRA Omidfar, FAHIMEH Khorsand, MAEDEH Darziani Azizi. New analytical applications of gold nanoparticles as label in antibody based sensors[J]. Biosensors & Bioelectronics,2013,43:336−347.
|
[4] |
LIN Likai, LIA A Stanciu. Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay[J]. Sensors and Actuators B: Chemical,2018,276:222−229. doi: 10.1016/j.snb.2018.08.068
|
[5] |
JI Yanwei, REN Meiling, LI Yanping, et al. Detection of aflatoxin B(1) with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers[J]. Talanta,2015,142:206−212. doi: 10.1016/j.talanta.2015.04.048
|
[6] |
PENG Tao, WANG Jianyi, ZHAO Sijun, et al. Highly luminescent green-emitting Au nanocluster-based multiplex lateral flow immunoassay for ultrasensitive detection of clenbuterol and ractopamine[J]. Analytica Chimica Acta,2018,1040:143−149. doi: 10.1016/j.aca.2018.08.014
|
[7] |
LIU Sijie, DOU Leina, YAO Xiaolin, et al. Polydopamine nanospheres as high-affinity signal tag towards lateral flow immunoassay for sensitive furazolidone detection[J]. Food Chemistry,2020,315:126310. doi: 10.1016/j.foodchem.2020.126310
|
[8] |
XU Shaolan, ZHANG Ganggang, FANG Bolong, et al. Lateral flow Immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize[J]. ACS Applied Materials & Interfaces,2019,11(34):31283−31290.
|
[9] |
HE Deyun, WU Zhengzong, CUI Bo, et al. Establishment of a dual mode immunochromatographic assay for Campylobacter jejuni detection[J]. Food Chemistry,2019,289:708−713. doi: 10.1016/j.foodchem.2019.03.106
|
[10] |
CAI Peiyuan, WANG Rongzhi, LING Sumei, et al. A high sensitive platinum-modified colloidal gold immunoassay for tenuazonic acid detection based on monoclonal IgG[J]. Food Chemistry,2021,360:130021. doi: 10.1016/j.foodchem.2021.130021
|
[11] |
SU Lihong, WANG Lulu, XU Jingke, et al. Competitive lateral flow immunoassay relying on Au-SiO2 janus nanoparticles with an asymmetric structure and function for furazolidone residue monitoring[J]. Journal of Agricultural and Food Chemistry,2021,69(1):511−519. doi: 10.1021/acs.jafc.0c06016
|
[12] |
LE Tao, XIE Yong, ZHU Liqian, et al. Rapid and sensitive detection of 3-amino-2-oxazolidinone using a quantum dot-based immunochromatographic fluorescent biosensor[J]. Journal of Agricultural and Food Chemistry,2016,64(45):8678−8683. doi: 10.1021/acs.jafc.6b03732
|
[13] |
WANG Yulong, XU Junli, QIU Yulou, et al. Highly specific monoclonal antibody and sensitive quantum dot beads-based fluorescence immunochromatographic test strip for tebuconazole assay in agricultural products[J]. Journal of Agricultural and Food Chemistry,2019,67(32):9096−9103. doi: 10.1021/acs.jafc.9b02832
|
[14] |
HUANG Zhen, LIU Yihui, CHEN Yuan, et al. Improving the performance of upconversion nanoprobe-based lateral flow immunoassays by supramolecular self-assembly core/shell strategies[J]. Sensors and Actuators B: Chemical,2020,318:128233. doi: 10.1016/j.snb.2020.128233
|
[15] |
LIU Zhiwei, HUA Qicheng, WANG Jin, et al. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals[J]. Biosensors & Bioelectronics,2020,158:112178.
|
[16] |
ZHANG Xiya, YU Xuezhi, WEN Kai, et al. Multiplex lateral flow immunoassays based on amorphous carbon nanoparticles for detecting three fusarium mycotoxins in maize[J]. Journal of Agricultural and Food Chemistry,2017,65(36):8063−8071. doi: 10.1021/acs.jafc.7b02827
|
[17] |
LIU Bing, WANG Lingling, TONG Bei, et al. Development and comparison of immunochromatographic strips with three nanomaterial labels: Colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol[J]. Biosensors & Bioelectronics,2016,85:337−342.
|
[18] |
BAI Feier, BU Tong, ZHANG Meng, et al. Rhombic-like Al nanosupporter-based fluorescent immunochromatographic assay for the sensitive detection of tetracycline[J]. Sensors and Actuators B: Chemical,2020,324:128721. doi: 10.1016/j.snb.2020.128721
|
[19] |
WANG Lulu, ZHANG Han, SU Lihong, et al. Mild resorcinol formaldehyde resin polymer based immunochromatography assay for high-sensitive detection of clenbuterol[J]. Sensors and Actuators B: Chemical,2021,331:129443. doi: 10.1016/j.snb.2021.129443
|
[20] |
XU Ying, MA Biao, CHEN Erjing, et al. Dual fluorescent immunochromatographic assay for simultaneous quantitative detection of citrinin and zearalenone in corn samples[J]. Food Chemistry,2021,336:127713. doi: 10.1016/j.foodchem.2020.127713
|
[21] |
ZHANG Yunyue, REN Fazheng, WANG Guoxin, et al. Rapid and sensitive pathogen detection platform based on a lanthanide-labeled immunochromatographic strip test combined with immunomagnetic separation[J]. Sensors and Actuators B: Chemical,2021,329:129273. doi: 10.1016/j.snb.2020.129273
|
[22] |
PANFEROV Vasily G, SAFENKOVA Irina V, ZHERDEV Anatoly V, et al. Setting up the cut-off level of a sensitive barcode lateral flow assay with magnetic nanoparticles[J]. Talanta,2017,164:69−76. doi: 10.1016/j.talanta.2016.11.025
|
[23] |
HUANG Zhen, PENG Juan, HAN Jiaojiao, et al. A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157: H7
|
[24] |
HAO Liangwen, CHEN Jing, CHEN Xirui, et al. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice[J]. Food Chemistry,2021,336:127710. doi: 10.1016/j.foodchem.2020.127710
|
[25] |
LIU Sijie, DOU Leina, YAO Xiaolin, et al. Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range[J]. Biosensors & Bioelectronics,2020,169:112610.
|
[26] |
LI Xiangmei, WU Xinze, WANG Jin, et al. Three lateral flow immunochromatographic assays based on different nanoparticle probes for on-site detection of tylosin and tilmicosin in milk and pork[J]. Sensors and Actuators B: Chemical,2019,301:127059. doi: 10.1016/j.snb.2019.127059
|
[27] |
LU Lixia, GE Yuanyuan, WANG Xin, et al. Rapid and sensitive multimode detection of Salmonella typhimurium based on the photothermal effect and peroxidase-like activity of MoS2@Au nanocomposite[J]. Sensors and Actuators B: Chemical,2021,326:128807. doi: 10.1016/j.snb.2020.128807
|
[28] |
YAO Xiaolin, WANG Zonghan, ZHAO Man, et al. Graphite-like carbon nitride-laden gold nanoparticles as signal amplification label for highly sensitive lateral flow immunoassay of 17 beta-estradiol[J]. Food Chemistry,2021,347:129001. doi: 10.1016/j.foodchem.2021.129001
|
[29] |
CHENG Nan, SHI Qiurong, ZHU Chengzhou, et al. Pt-Ni(OH)2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides[J]. Biosensors & Bioelectronics,2019,142:111498.
|
[30] |
YU Li, LI Peiwu, DING Xiaoxia, et al. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays[J]. Talanta,2017,165:167−175. doi: 10.1016/j.talanta.2016.12.042
|
[31] |
BU Tong, ZHANG Meng, SUN Xinyu, et al. Gold nanoparticles-functionalized microorganisms assisted construction of immunobiosensor for sensitive detection of ochratoxin A in food samples[J]. Sensors and Actuators B: Chemical,2019,299:126969. doi: 10.1016/j.snb.2019.126969
|
[32] |
TIAN Yongming, BU Tong, ZHANG Meng, et al. Metal-polydopamine framework based lateral flow assay for high sensitive detection of tetracycline in food samples[J]. Food Chemistry,2021,339:127854. doi: 10.1016/j.foodchem.2020.127854
|
[33] |
ZHANG Meng, BU Tong, BAI Feier, et al. Gold nanoparticles-functionalized three-dimensional flower-like manganese dioxide: A high-sensitivity thermal analysis immunochromatographic sensor[J]. Food Chemistry,2021,341:128231. doi: 10.1016/j.foodchem.2020.128231
|
[34] |
FABIO Di Nardo, SIMONE Cavalera, CLAUDIO Baggiani, et al. Direct vs mediated coupling of antibodies to gold nanoparticles: The case of salivary cortisol detection by lateral flow immunoassay[J]. ACS Appl Mater Interfaces,2019,11(36):32758−32768. doi: 10.1021/acsami.9b11559
|
[35] |
HE Kunyi, BU Tong, ZHAO Shuang, et al. Well-orientation strategy for direct binding of antibodies: Development of the immunosensor using the antigen modified Fe2O3 nanoprobes for sensitive detection of aflatoxin B1[J]. Food Chemistry,2021:129583.
|
[36] |
WANG Zonghan, YAO Xiaolin, WANG Rong, et al. Label-free strip sensor based on surface positively charged nitrogen-rich carbon nanoparticles for rapid detection of Salmonella enteritidis[J]. Biosensors & Bioelectronics,2019,132:360−367.
|
[37] |
YAO Xiaolin, WANG Zonghan, DOU Leina, et al. An innovative immunochromatography assay for highly sensitive detection of 17β-estradiol based on an indirect probe strategy[J]. Sensors and Actuators B: Chemical,2019,289:48−55. doi: 10.1016/j.snb.2019.03.078
|
[38] |
ALINA V Petrakova, ALEXANDR E Urusov, MILYAUSHA K Gubaydullina, et al. “External” antibodies as the simplest tool for sensitive immunochromatographic tests[J]. Talanta,2017,175:77−81. doi: 10.1016/j.talanta.2017.07.027
|
[39] |
BU Tong, YAO Xiaolin, HUANG Lunjie, et al. Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection[J]. Talanta,2020,206:120204. doi: 10.1016/j.talanta.2019.120204
|
[40] |
WANG Zonghan, YAO Xiaolin, ZHANG Yongzhi, et al. Functional nanozyme mediated multi-readout and label-free lateral flow immunoassay for rapid detection of Escherichia coli O157: H7
|
[41] |
WU Shijia, LIU Lihong, DUAN Nuo, et al. Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples[J]. Journal of Agricultural and Food Chemistry,2018,66(8):1949−1954. doi: 10.1021/acs.jafc.7b05326
|
[42] |
JIN Birui, YANG Yexin, HE Rongyan, et al. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles[J]. Sensors and Actuators B: Chemical,2018,276:48−56. doi: 10.1016/j.snb.2018.08.074
|
[43] |
HASAN Ilhan, EMINE Kubra Tayyarcan, MEHMET Gokhan Caglayan, et al. Replacement of antibodies with bacteriophages in lateral flow assay of Salmonella enteritidis[J]. Biosensors & Bioelectronics,2021,189:113383.
|
[44] |
YANG Honglin, WANG Yingran, LIU Shengyin, et al. Lateral flow assay of methicillin-resistant Staphylococcus aureus using bacteriophage cellular wall-binding domain as recognition agent[J]. Biosensors & Bioelectronics,2021,182:113189.
|
[45] |
XU Jingke, DOU Leina, LIU Sijie, et al. Lateral flow immunoassay for furazolidone point-of-care testing: Cater to the call of saving time, labor, and cost by coomassie brilliant blue labeling[J]. Food Chemistry,2021,352:129415. doi: 10.1016/j.foodchem.2021.129415
|
[46] |
DOU Leina, BU Tong, ZHANG Wentao, et al. Chemical-staining based lateral flow immunoassay: A nanomaterials-free and ultra-simple tool for a small molecule detection[J]. Sensors and Actuators B: Chemical,2019,279:427−432. doi: 10.1016/j.snb.2018.10.033
|
[47] |
SONG Chunmei, LIU Jinxin, LI Jianwu, et al. Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157: H7 in food samples[J]. Biosensors & Bioelectronics,2016,85:734−739.
|
[48] |
BU Tong, HUANG Qiong, YAN Lingzhi, et al. Applicability of biological dye tracer in strip biosensor for ultrasensitive detection of pathogenic bacteria[J]. Food Chemistry,2019,274:816−821. doi: 10.1016/j.foodchem.2018.09.066
|
[49] |
HAN Miaomiao, GONG Lu, WANG Jiayi, et al. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk[J]. Sensors and Actuators B:Chemical,2019,292:94−104. doi: 10.1016/j.snb.2019.04.019
|
[50] |
ZHANG Huiyan, LUO Jiaxun, NATALIA Beloglazova, et al. Portable multiplex immunochromatographic assay for quantitation of two typical algae toxins based on dual-color fluorescence microspheres[J]. Journal of Agricultural and Food Chemistry,2019,67(21):6041−6047. doi: 10.1021/acs.jafc.9b00011
|
[51] |
QI Shu, LIMIN Wang, HUI Ouyang, et al. Multiplexed immunochromatographic test strip for time-resolved chemiluminescent detection of pesticide residues using a bifunctional antibody[J]. Biosensors & Bioelectronics,2017,87:908−914.
|
[52] |
FABIO Di Nardo, EUGENIO Alladio, CLAUDIO Baggiani, et al. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single test line[J]. Talanta,2019,192:288−294. doi: 10.1016/j.talanta.2018.09.037
|
[53] |
HE Wanghong, YOU Minli, LI Zedong, et al. Upconversion nanoparticles-based lateral flow immunoassay for point-of-care diagnosis of periodontitis[J]. Sensors and Actuators B: Chemical,2021,334:129673. doi: 10.1016/j.snb.2021.129673
|
[54] |
WU Yuhao, ZHOU Yaofeng, LENG Yuankui, et al. Emerging design strategies for constructing multiplex lateral flow test strip sensors[J]. Biosensors & Bioelectronics,2020,157:112168.
|
[55] |
ZHAO Yong, WANG Haoran, ZHANG Pingping, et al. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay[J]. Scientific Reports,2016,6:21342. doi: 10.1038/srep21342
|
[56] |
RONG Zhen, XIAO Rui, PENG Yongjin, et al. Integrated fluorescent lateral flow assay platform for point-of-care diagnosis of infectious diseases by using a multichannel test cartridge[J]. Sensors and Actuators B: Chemical,2021,329:129193. doi: 10.1016/j.snb.2020.129193
|
[57] |
HUI Ouyang, WANG Mengyao, WANG Wenwen, et al. Colorimetric/chemiluminescent immunochromatographic test strip by using luminol-reduced gold nanoparticles as dual-response probes[J]. Sensors and Actuators B: Chemical,2018,266:318−322. doi: 10.1016/j.snb.2018.03.115
|
[58] |
HUI Ouyang, WANG Wenwen, SHU Qi, et al. Novel chemiluminescent immunochromatographic assay using a dualreadout signal probe for multiplexed detection of pesticide residues[J]. Analyst, 2018, 143(12): 2883−2888.
|
[59] |
DENG Jinqi, YANG Mingzhu, WU Jing, et al. A self-contained chemiluminescent lateral flow assay for point-of-care testing[J]. Analytical Chemistry,2018,90(15):9132−9137. doi: 10.1021/acs.analchem.8b01543
|
[60] |
WANG Yiru, QIN Zhengpeng, DAVID R Boulware, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays[J]. Analytical Chemistry,2016,88(23):11774−11782. doi: 10.1021/acs.analchem.6b03406
|
[61] |
QU Zhuo, WANG Kan, GABRIEL Alfranca, et al. A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification[J]. Nanoscale Research Letters,2020,15(1):10. doi: 10.1186/s11671-019-3240-3
|
[62] |
HUANG Tiansheng, FU Qiangqiang, SUN Lipeng, et al. Photothermal lateral flow immunoassay using microfiber long-period grating[J]. Sensors and Actuators B: Chemical,2021,344:130283. doi: 10.1016/j.snb.2021.130283
|
[63] |
LI Shijie, ZHANG Ying, WEN Wenjun, et al. A high-sensitivity thermal analysis immunochromatographic sensor based on au nanoparticle-enhanced two-dimensional black phosphorus photothermal-sensing materials[J]. Biosensors & Bioelectronics,2019,133:223−229.
|
[64] |
SU Lihong, CHEN Yaqian, WANG Lulu, et al. Dual-signal based immunoassay for colorimetric and photothermal detection of furazolidone[J]. Sensors and Actuators B: Chemical,2021,331:129431. doi: 10.1016/j.snb.2020.129431
|
[65] |
LI Yu, TANG Shusheng, ZHANG Wanjun, et al. A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk[J]. Sensors and Actuators B: Chemical,2019,282:703−711. doi: 10.1016/j.snb.2018.11.050
|
[66] |
SU Lihong, HU Huilan, TIAN Yanli, et al. Highly sensitive colorimetric/surface-enhanced raman spectroscopy immunoassay relying on a metallic core-shell Au/Au nanostar with clenbuterol as a target analyte[J]. Analytical Chemistry,2021,93(23):8362−8369. doi: 10.1021/acs.analchem.1c01487
|
[67] |
SHENG Enze, LU Yuxiao, XIAO Yue, et al. Simultaneous and ultrasensitive detection of three pesticides using a surface-enhanced Raman scattering-based lateral flow assay test strip[J]. Biosensors & Bioelectronics,2021,181:113149.
|
[68] |
PANFEROV V G, SAFENKOVA I V, VARITSEV Y A, et al. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers[J]. Talanta,2016,152:521−530. doi: 10.1016/j.talanta.2016.02.050
|
[69] |
BU Tong, HUANG Qiong, YAN Lingzhi, et al. Ultra technically-simple and sensitive detection for Salmonella enteritidis by immunochromatographic assay based on gold growth[J]. Food Control,2018,84:536−543. doi: 10.1016/j.foodcont.2017.08.036
|
[70] |
WANG Jingyun, CHEN Minghui, SHENG Zhichao, et al. Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157: H7 in milk[J]. RSC Advances,2015,5(76):62300−62305. doi: 10.1039/C5RA13279G
|
[71] |
TIAN Meiling, LEI Lingli, XIE Wenyue, et al. Copper deposition-induced efficient signal amplification for ultrasensitive lateral flow immunoassay[J]. Sensors and Actuators B: Chemical,2019,282:96−103. doi: 10.1016/j.snb.2018.11.028
|
[72] |
HUANG Di, LIN Bingqian, SONG Yanling, et al. Staining traditional colloidal gold test strips with Pt nanoshell enables quantitative point-of-care testing with simple and portable pressure meter readou[J]. ACS Applied Materials & Interfaces,2019,11(2):1800−1806.
|
[73] |
YOSITA Panraksa, AMARA Apilux, SAKDA Jampasa, et al. A facile one-step gold nanoparticles enhancement based on sequential patterned lateral flow immunoassay device for C-reactive protein detection[J]. Sensors and Actuators B: Chemical,2021,329:129241. doi: 10.1016/j.snb.2020.129241
|
[74] |
CLAUDIO Parolo, ALFREDO De la Escosura-Mun, ARBEN Merkoci. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes[J]. Biosensors and Bioelectronics,2013,40(1):412−416. doi: 10.1016/j.bios.2012.06.049
|
[75] |
FANG Qingkui, WANG Limin, CHENG Qi, et al. A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples[J]. Analytica Chimica Acta,2015,881:82−89. doi: 10.1016/j.aca.2015.04.047
|
[76] |
ZHONG Youhao, CHEN Yinji, Yao Li, et al. Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening[J]. Microchimica Acta,2016,183(6):1989−1994. doi: 10.1007/s00604-016-1812-9
|
[77] |
DOU Leina, ZHAO Bingxin, BU Tong, et al. Highly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assay[J]. Analytical and Bioanalytical Chemistry,2018,410(13):3161−3170. doi: 10.1007/s00216-018-1003-0
|
[78] |
DANIEL Quesada-González, CHRISTINA Stefani, Israel Gonzalez, et al. Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers[J]. Biosensors & Bioelectronics,2019,141:111407.
|
[79] |
JANE Ru Choi, LIU Zhi, HU Jie, et al. Polydimethylsiloxanepaper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing[J]. Analytical Chemistry,2016,88(12):6254−6264. doi: 10.1021/acs.analchem.6b00195
|
[80] |
IOANNIS N Katis, PEIJUN J W He, ROBERT W Eason, et al. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path[J]. Biosensors and Bioelectronics,2018,113:95−100. doi: 10.1016/j.bios.2018.05.001
|
[81] |
AMADEO Sena Torralba, DUY Ba Ngo, CLAUDIO Parolo, et al. Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy[J]. Biosensors and Bioelectronics,2020,168:112559. doi: 10.1016/j.bios.2020.112559
|
1. |
徐嘉欣,罗哲,何安,黄潘钿,沈金鹏,郭俊斌,苗建银. 南珠贝壳珍珠层源抗氧化肽的制备及对酪氨酸酶的抑制活性. 食品工业科技. 2025(06): 242-251 .
![]() | |
2. |
刘洋,白家瑞,周先加,毛海峰. 牦牛皮酶法脱毛工艺优化及其对食用品质的影响. 中国皮革. 2024(04): 38-44 .
![]() | |
3. |
和金泽,崔浩然,李钰芳,郑文涛,彭清雅,李丽,黄艾祥. 中甸牦牛乳酪蛋白源生物活性肽的鉴定及抗氧化活性. 乳业科学与技术. 2024(06): 1-7 .
![]() | |
4. |
王增丽,付坚,何同,王雪峰,范江平,黄艾祥. 青刺果粕抗氧化肽的酶法制备工艺优化及体外抗氧化活性分析. 现代食品科技. 2024(12): 49-56 .
![]() | |
5. |
李玉婷,张天宝,杜慧玲,郭继虎,张鸣慧,亢芬,张佳乐. 黄粉虫酶解产物的制备及活性研究. 食品科技. 2023(04): 245-251 .
![]() | |
6. |
杨宝强,刘生杰. 响应面法优化猴头菇蛋白抗氧化肽工艺及抗运动疲劳活性研究. 粮食与油脂. 2023(05): 142-147 .
![]() | |
7. |
马凤,叶灏铎,夏珍,徐燕,孙世利,曹庸,苗建银. 英红九号茶蛋白ACE抑制肽的制备、氨基酸组成及不同超滤组分的活性评价. 现代食品科技. 2023(07): 237-245 .
![]() | |
8. |
张丙云,蔡早宁,王珈玮,潘立超,郭晓鹏,范文广,任海伟. 基于文献计量分析的动物源活性肽领域的态势分析. 食品工业科技. 2022(08): 320-328 .
![]() | |
9. |
康澳,巩思佳,陈可菁,李子豪,郑雪韵,陈冰冰,陈文浩,曹庸,苗建银. 固态发酵制备辣木叶活性肽及其抗氧化活性. 现代食品科技. 2022(06): 105-115 .
![]() |