YAN Lingzhi. Research Progress of Lateral Flow Immunoassay in Food Safety[J]. Science and Technology of Food Industry, 2022, 43(4): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070031.
Citation: YAN Lingzhi. Research Progress of Lateral Flow Immunoassay in Food Safety[J]. Science and Technology of Food Industry, 2022, 43(4): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070031.

Research Progress of Lateral Flow Immunoassay in Food Safety

More Information
  • Received Date: July 04, 2021
  • Accepted Date: December 07, 2021
  • Available Online: December 15, 2021
  • lateral flow immunoassay (LFIA) not only effectively combines the separation ability of chromatography technology and the excellent specificity of immunoassay methods, but also provides an ideal platform for the on-site detection of food safety with advantages of easy operation, rapid detection and low cost. Gold nanoparticle is a commonly used signal label in the field of LFIA analysis. Unfortunately, conventional gold-based LFIA often suffers from drawbacks of low sensitivity, which can only satisfy qualitative and semi-quantitative information on analyte concentrations. To improve the detection performance of LFIA, researchers have made significant efforts. In this contribution, the basic principle of LFIA is introduced and the recent technical improvements are systematically summarized, such as developing novel signal nanoparticles, signal enhancement method, multiplex target detection and different signal readout mode, etc. Meanwhile, this study discusses the shortcomings and the trend of LFIA, which would provide technical references for the development of rapid detection methods for food safety in China.
  • [1]
    HUANG Xiaolin, ZORAIDA P Aguilar, XU Hengyi, et al. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review[J]. Biosensors & Bioelectronics,2016,75:166−180.
    [2]
    ELIF Burcu Bahadır, MUSTAFA Kemal Sezgintürk. Lateral flow assays: Principles, designs and labels[J]. Trends in Analytical Chemistry,2016,82:286−306. doi: 10.1016/j.trac.2016.06.006
    [3]
    KOBRA Omidfar, FAHIMEH Khorsand, MAEDEH Darziani Azizi. New analytical applications of gold nanoparticles as label in antibody based sensors[J]. Biosensors & Bioelectronics,2013,43:336−347.
    [4]
    LIN Likai, LIA A Stanciu. Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay[J]. Sensors and Actuators B: Chemical,2018,276:222−229. doi: 10.1016/j.snb.2018.08.068
    [5]
    JI Yanwei, REN Meiling, LI Yanping, et al. Detection of aflatoxin B(1) with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers[J]. Talanta,2015,142:206−212. doi: 10.1016/j.talanta.2015.04.048
    [6]
    PENG Tao, WANG Jianyi, ZHAO Sijun, et al. Highly luminescent green-emitting Au nanocluster-based multiplex lateral flow immunoassay for ultrasensitive detection of clenbuterol and ractopamine[J]. Analytica Chimica Acta,2018,1040:143−149. doi: 10.1016/j.aca.2018.08.014
    [7]
    LIU Sijie, DOU Leina, YAO Xiaolin, et al. Polydopamine nanospheres as high-affinity signal tag towards lateral flow immunoassay for sensitive furazolidone detection[J]. Food Chemistry,2020,315:126310. doi: 10.1016/j.foodchem.2020.126310
    [8]
    XU Shaolan, ZHANG Ganggang, FANG Bolong, et al. Lateral flow Immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize[J]. ACS Applied Materials & Interfaces,2019,11(34):31283−31290.
    [9]
    HE Deyun, WU Zhengzong, CUI Bo, et al. Establishment of a dual mode immunochromatographic assay for Campylobacter jejuni detection[J]. Food Chemistry,2019,289:708−713. doi: 10.1016/j.foodchem.2019.03.106
    [10]
    CAI Peiyuan, WANG Rongzhi, LING Sumei, et al. A high sensitive platinum-modified colloidal gold immunoassay for tenuazonic acid detection based on monoclonal IgG[J]. Food Chemistry,2021,360:130021. doi: 10.1016/j.foodchem.2021.130021
    [11]
    SU Lihong, WANG Lulu, XU Jingke, et al. Competitive lateral flow immunoassay relying on Au-SiO2 janus nanoparticles with an asymmetric structure and function for furazolidone residue monitoring[J]. Journal of Agricultural and Food Chemistry,2021,69(1):511−519. doi: 10.1021/acs.jafc.0c06016
    [12]
    LE Tao, XIE Yong, ZHU Liqian, et al. Rapid and sensitive detection of 3-amino-2-oxazolidinone using a quantum dot-based immunochromatographic fluorescent biosensor[J]. Journal of Agricultural and Food Chemistry,2016,64(45):8678−8683. doi: 10.1021/acs.jafc.6b03732
    [13]
    WANG Yulong, XU Junli, QIU Yulou, et al. Highly specific monoclonal antibody and sensitive quantum dot beads-based fluorescence immunochromatographic test strip for tebuconazole assay in agricultural products[J]. Journal of Agricultural and Food Chemistry,2019,67(32):9096−9103. doi: 10.1021/acs.jafc.9b02832
    [14]
    HUANG Zhen, LIU Yihui, CHEN Yuan, et al. Improving the performance of upconversion nanoprobe-based lateral flow immunoassays by supramolecular self-assembly core/shell strategies[J]. Sensors and Actuators B: Chemical,2020,318:128233. doi: 10.1016/j.snb.2020.128233
    [15]
    LIU Zhiwei, HUA Qicheng, WANG Jin, et al. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals[J]. Biosensors & Bioelectronics,2020,158:112178.
    [16]
    ZHANG Xiya, YU Xuezhi, WEN Kai, et al. Multiplex lateral flow immunoassays based on amorphous carbon nanoparticles for detecting three fusarium mycotoxins in maize[J]. Journal of Agricultural and Food Chemistry,2017,65(36):8063−8071. doi: 10.1021/acs.jafc.7b02827
    [17]
    LIU Bing, WANG Lingling, TONG Bei, et al. Development and comparison of immunochromatographic strips with three nanomaterial labels: Colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol[J]. Biosensors & Bioelectronics,2016,85:337−342.
    [18]
    BAI Feier, BU Tong, ZHANG Meng, et al. Rhombic-like Al nanosupporter-based fluorescent immunochromatographic assay for the sensitive detection of tetracycline[J]. Sensors and Actuators B: Chemical,2020,324:128721. doi: 10.1016/j.snb.2020.128721
    [19]
    WANG Lulu, ZHANG Han, SU Lihong, et al. Mild resorcinol formaldehyde resin polymer based immunochromatography assay for high-sensitive detection of clenbuterol[J]. Sensors and Actuators B: Chemical,2021,331:129443. doi: 10.1016/j.snb.2021.129443
    [20]
    XU Ying, MA Biao, CHEN Erjing, et al. Dual fluorescent immunochromatographic assay for simultaneous quantitative detection of citrinin and zearalenone in corn samples[J]. Food Chemistry,2021,336:127713. doi: 10.1016/j.foodchem.2020.127713
    [21]
    ZHANG Yunyue, REN Fazheng, WANG Guoxin, et al. Rapid and sensitive pathogen detection platform based on a lanthanide-labeled immunochromatographic strip test combined with immunomagnetic separation[J]. Sensors and Actuators B: Chemical,2021,329:129273. doi: 10.1016/j.snb.2020.129273
    [22]
    PANFEROV Vasily G, SAFENKOVA Irina V, ZHERDEV Anatoly V, et al. Setting up the cut-off level of a sensitive barcode lateral flow assay with magnetic nanoparticles[J]. Talanta,2017,164:69−76. doi: 10.1016/j.talanta.2016.11.025
    [23]
    HUANG Zhen, PENG Juan, HAN Jiaojiao, et al. A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157: H7[J]. Food Chemistry,2019,276:333−341. doi: 10.1016/j.foodchem.2018.09.164
    [24]
    HAO Liangwen, CHEN Jing, CHEN Xirui, et al. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice[J]. Food Chemistry,2021,336:127710. doi: 10.1016/j.foodchem.2020.127710
    [25]
    LIU Sijie, DOU Leina, YAO Xiaolin, et al. Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range[J]. Biosensors & Bioelectronics,2020,169:112610.
    [26]
    LI Xiangmei, WU Xinze, WANG Jin, et al. Three lateral flow immunochromatographic assays based on different nanoparticle probes for on-site detection of tylosin and tilmicosin in milk and pork[J]. Sensors and Actuators B: Chemical,2019,301:127059. doi: 10.1016/j.snb.2019.127059
    [27]
    LU Lixia, GE Yuanyuan, WANG Xin, et al. Rapid and sensitive multimode detection of Salmonella typhimurium based on the photothermal effect and peroxidase-like activity of MoS2@Au nanocomposite[J]. Sensors and Actuators B: Chemical,2021,326:128807. doi: 10.1016/j.snb.2020.128807
    [28]
    YAO Xiaolin, WANG Zonghan, ZHAO Man, et al. Graphite-like carbon nitride-laden gold nanoparticles as signal amplification label for highly sensitive lateral flow immunoassay of 17 beta-estradiol[J]. Food Chemistry,2021,347:129001. doi: 10.1016/j.foodchem.2021.129001
    [29]
    CHENG Nan, SHI Qiurong, ZHU Chengzhou, et al. Pt-Ni(OH)2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides[J]. Biosensors & Bioelectronics,2019,142:111498.
    [30]
    YU Li, LI Peiwu, DING Xiaoxia, et al. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays[J]. Talanta,2017,165:167−175. doi: 10.1016/j.talanta.2016.12.042
    [31]
    BU Tong, ZHANG Meng, SUN Xinyu, et al. Gold nanoparticles-functionalized microorganisms assisted construction of immunobiosensor for sensitive detection of ochratoxin A in food samples[J]. Sensors and Actuators B: Chemical,2019,299:126969. doi: 10.1016/j.snb.2019.126969
    [32]
    TIAN Yongming, BU Tong, ZHANG Meng, et al. Metal-polydopamine framework based lateral flow assay for high sensitive detection of tetracycline in food samples[J]. Food Chemistry,2021,339:127854. doi: 10.1016/j.foodchem.2020.127854
    [33]
    ZHANG Meng, BU Tong, BAI Feier, et al. Gold nanoparticles-functionalized three-dimensional flower-like manganese dioxide: A high-sensitivity thermal analysis immunochromatographic sensor[J]. Food Chemistry,2021,341:128231. doi: 10.1016/j.foodchem.2020.128231
    [34]
    FABIO Di Nardo, SIMONE Cavalera, CLAUDIO Baggiani, et al. Direct vs mediated coupling of antibodies to gold nanoparticles: The case of salivary cortisol detection by lateral flow immunoassay[J]. ACS Appl Mater Interfaces,2019,11(36):32758−32768. doi: 10.1021/acsami.9b11559
    [35]
    HE Kunyi, BU Tong, ZHAO Shuang, et al. Well-orientation strategy for direct binding of antibodies: Development of the immunosensor using the antigen modified Fe2O3 nanoprobes for sensitive detection of aflatoxin B1[J]. Food Chemistry,2021:129583.
    [36]
    WANG Zonghan, YAO Xiaolin, WANG Rong, et al. Label-free strip sensor based on surface positively charged nitrogen-rich carbon nanoparticles for rapid detection of Salmonella enteritidis[J]. Biosensors & Bioelectronics,2019,132:360−367.
    [37]
    YAO Xiaolin, WANG Zonghan, DOU Leina, et al. An innovative immunochromatography assay for highly sensitive detection of 17β-estradiol based on an indirect probe strategy[J]. Sensors and Actuators B: Chemical,2019,289:48−55. doi: 10.1016/j.snb.2019.03.078
    [38]
    ALINA V Petrakova, ALEXANDR E Urusov, MILYAUSHA K Gubaydullina, et al. “External” antibodies as the simplest tool for sensitive immunochromatographic tests[J]. Talanta,2017,175:77−81. doi: 10.1016/j.talanta.2017.07.027
    [39]
    BU Tong, YAO Xiaolin, HUANG Lunjie, et al. Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection[J]. Talanta,2020,206:120204. doi: 10.1016/j.talanta.2019.120204
    [40]
    WANG Zonghan, YAO Xiaolin, ZHANG Yongzhi, et al. Functional nanozyme mediated multi-readout and label-free lateral flow immunoassay for rapid detection of Escherichia coli O157: H7[J]. Food Chemistry,2020,329:127224. doi: 10.1016/j.foodchem.2020.127224
    [41]
    WU Shijia, LIU Lihong, DUAN Nuo, et al. Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples[J]. Journal of Agricultural and Food Chemistry,2018,66(8):1949−1954. doi: 10.1021/acs.jafc.7b05326
    [42]
    JIN Birui, YANG Yexin, HE Rongyan, et al. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles[J]. Sensors and Actuators B: Chemical,2018,276:48−56. doi: 10.1016/j.snb.2018.08.074
    [43]
    HASAN Ilhan, EMINE Kubra Tayyarcan, MEHMET Gokhan Caglayan, et al. Replacement of antibodies with bacteriophages in lateral flow assay of Salmonella enteritidis[J]. Biosensors & Bioelectronics,2021,189:113383.
    [44]
    YANG Honglin, WANG Yingran, LIU Shengyin, et al. Lateral flow assay of methicillin-resistant Staphylococcus aureus using bacteriophage cellular wall-binding domain as recognition agent[J]. Biosensors & Bioelectronics,2021,182:113189.
    [45]
    XU Jingke, DOU Leina, LIU Sijie, et al. Lateral flow immunoassay for furazolidone point-of-care testing: Cater to the call of saving time, labor, and cost by coomassie brilliant blue labeling[J]. Food Chemistry,2021,352:129415. doi: 10.1016/j.foodchem.2021.129415
    [46]
    DOU Leina, BU Tong, ZHANG Wentao, et al. Chemical-staining based lateral flow immunoassay: A nanomaterials-free and ultra-simple tool for a small molecule detection[J]. Sensors and Actuators B: Chemical,2019,279:427−432. doi: 10.1016/j.snb.2018.10.033
    [47]
    SONG Chunmei, LIU Jinxin, LI Jianwu, et al. Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157: H7 in food samples[J]. Biosensors & Bioelectronics,2016,85:734−739.
    [48]
    BU Tong, HUANG Qiong, YAN Lingzhi, et al. Applicability of biological dye tracer in strip biosensor for ultrasensitive detection of pathogenic bacteria[J]. Food Chemistry,2019,274:816−821. doi: 10.1016/j.foodchem.2018.09.066
    [49]
    HAN Miaomiao, GONG Lu, WANG Jiayi, et al. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk[J]. Sensors and Actuators B:Chemical,2019,292:94−104. doi: 10.1016/j.snb.2019.04.019
    [50]
    ZHANG Huiyan, LUO Jiaxun, NATALIA Beloglazova, et al. Portable multiplex immunochromatographic assay for quantitation of two typical algae toxins based on dual-color fluorescence microspheres[J]. Journal of Agricultural and Food Chemistry,2019,67(21):6041−6047. doi: 10.1021/acs.jafc.9b00011
    [51]
    QI Shu, LIMIN Wang, HUI Ouyang, et al. Multiplexed immunochromatographic test strip for time-resolved chemiluminescent detection of pesticide residues using a bifunctional antibody[J]. Biosensors & Bioelectronics,2017,87:908−914.
    [52]
    FABIO Di Nardo, EUGENIO Alladio, CLAUDIO Baggiani, et al. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single test line[J]. Talanta,2019,192:288−294. doi: 10.1016/j.talanta.2018.09.037
    [53]
    HE Wanghong, YOU Minli, LI Zedong, et al. Upconversion nanoparticles-based lateral flow immunoassay for point-of-care diagnosis of periodontitis[J]. Sensors and Actuators B: Chemical,2021,334:129673. doi: 10.1016/j.snb.2021.129673
    [54]
    WU Yuhao, ZHOU Yaofeng, LENG Yuankui, et al. Emerging design strategies for constructing multiplex lateral flow test strip sensors[J]. Biosensors & Bioelectronics,2020,157:112168.
    [55]
    ZHAO Yong, WANG Haoran, ZHANG Pingping, et al. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay[J]. Scientific Reports,2016,6:21342. doi: 10.1038/srep21342
    [56]
    RONG Zhen, XIAO Rui, PENG Yongjin, et al. Integrated fluorescent lateral flow assay platform for point-of-care diagnosis of infectious diseases by using a multichannel test cartridge[J]. Sensors and Actuators B: Chemical,2021,329:129193. doi: 10.1016/j.snb.2020.129193
    [57]
    HUI Ouyang, WANG Mengyao, WANG Wenwen, et al. Colorimetric/chemiluminescent immunochromatographic test strip by using luminol-reduced gold nanoparticles as dual-response probes[J]. Sensors and Actuators B: Chemical,2018,266:318−322. doi: 10.1016/j.snb.2018.03.115
    [58]
    HUI Ouyang, WANG Wenwen, SHU Qi, et al. Novel chemiluminescent immunochromatographic assay using a dualreadout signal probe for multiplexed detection of pesticide residues[J]. Analyst, 2018, 143(12): 2883−2888.
    [59]
    DENG Jinqi, YANG Mingzhu, WU Jing, et al. A self-contained chemiluminescent lateral flow assay for point-of-care testing[J]. Analytical Chemistry,2018,90(15):9132−9137. doi: 10.1021/acs.analchem.8b01543
    [60]
    WANG Yiru, QIN Zhengpeng, DAVID R Boulware, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays[J]. Analytical Chemistry,2016,88(23):11774−11782. doi: 10.1021/acs.analchem.6b03406
    [61]
    QU Zhuo, WANG Kan, GABRIEL Alfranca, et al. A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification[J]. Nanoscale Research Letters,2020,15(1):10. doi: 10.1186/s11671-019-3240-3
    [62]
    HUANG Tiansheng, FU Qiangqiang, SUN Lipeng, et al. Photothermal lateral flow immunoassay using microfiber long-period grating[J]. Sensors and Actuators B: Chemical,2021,344:130283. doi: 10.1016/j.snb.2021.130283
    [63]
    LI Shijie, ZHANG Ying, WEN Wenjun, et al. A high-sensitivity thermal analysis immunochromatographic sensor based on au nanoparticle-enhanced two-dimensional black phosphorus photothermal-sensing materials[J]. Biosensors & Bioelectronics,2019,133:223−229.
    [64]
    SU Lihong, CHEN Yaqian, WANG Lulu, et al. Dual-signal based immunoassay for colorimetric and photothermal detection of furazolidone[J]. Sensors and Actuators B: Chemical,2021,331:129431. doi: 10.1016/j.snb.2020.129431
    [65]
    LI Yu, TANG Shusheng, ZHANG Wanjun, et al. A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk[J]. Sensors and Actuators B: Chemical,2019,282:703−711. doi: 10.1016/j.snb.2018.11.050
    [66]
    SU Lihong, HU Huilan, TIAN Yanli, et al. Highly sensitive colorimetric/surface-enhanced raman spectroscopy immunoassay relying on a metallic core-shell Au/Au nanostar with clenbuterol as a target analyte[J]. Analytical Chemistry,2021,93(23):8362−8369. doi: 10.1021/acs.analchem.1c01487
    [67]
    SHENG Enze, LU Yuxiao, XIAO Yue, et al. Simultaneous and ultrasensitive detection of three pesticides using a surface-enhanced Raman scattering-based lateral flow assay test strip[J]. Biosensors & Bioelectronics,2021,181:113149.
    [68]
    PANFEROV V G, SAFENKOVA I V, VARITSEV Y A, et al. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers[J]. Talanta,2016,152:521−530. doi: 10.1016/j.talanta.2016.02.050
    [69]
    BU Tong, HUANG Qiong, YAN Lingzhi, et al. Ultra technically-simple and sensitive detection for Salmonella enteritidis by immunochromatographic assay based on gold growth[J]. Food Control,2018,84:536−543. doi: 10.1016/j.foodcont.2017.08.036
    [70]
    WANG Jingyun, CHEN Minghui, SHENG Zhichao, et al. Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157: H7 in milk[J]. RSC Advances,2015,5(76):62300−62305. doi: 10.1039/C5RA13279G
    [71]
    TIAN Meiling, LEI Lingli, XIE Wenyue, et al. Copper deposition-induced efficient signal amplification for ultrasensitive lateral flow immunoassay[J]. Sensors and Actuators B: Chemical,2019,282:96−103. doi: 10.1016/j.snb.2018.11.028
    [72]
    HUANG Di, LIN Bingqian, SONG Yanling, et al. Staining traditional colloidal gold test strips with Pt nanoshell enables quantitative point-of-care testing with simple and portable pressure meter readou[J]. ACS Applied Materials & Interfaces,2019,11(2):1800−1806.
    [73]
    YOSITA Panraksa, AMARA Apilux, SAKDA Jampasa, et al. A facile one-step gold nanoparticles enhancement based on sequential patterned lateral flow immunoassay device for C-reactive protein detection[J]. Sensors and Actuators B: Chemical,2021,329:129241. doi: 10.1016/j.snb.2020.129241
    [74]
    CLAUDIO Parolo, ALFREDO De la Escosura-Mun, ARBEN Merkoci. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes[J]. Biosensors and Bioelectronics,2013,40(1):412−416. doi: 10.1016/j.bios.2012.06.049
    [75]
    FANG Qingkui, WANG Limin, CHENG Qi, et al. A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples[J]. Analytica Chimica Acta,2015,881:82−89. doi: 10.1016/j.aca.2015.04.047
    [76]
    ZHONG Youhao, CHEN Yinji, Yao Li, et al. Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening[J]. Microchimica Acta,2016,183(6):1989−1994. doi: 10.1007/s00604-016-1812-9
    [77]
    DOU Leina, ZHAO Bingxin, BU Tong, et al. Highly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assay[J]. Analytical and Bioanalytical Chemistry,2018,410(13):3161−3170. doi: 10.1007/s00216-018-1003-0
    [78]
    DANIEL Quesada-González, CHRISTINA Stefani, Israel Gonzalez, et al. Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers[J]. Biosensors & Bioelectronics,2019,141:111407.
    [79]
    JANE Ru Choi, LIU Zhi, HU Jie, et al. Polydimethylsiloxanepaper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing[J]. Analytical Chemistry,2016,88(12):6254−6264. doi: 10.1021/acs.analchem.6b00195
    [80]
    IOANNIS N Katis, PEIJUN J W He, ROBERT W Eason, et al. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path[J]. Biosensors and Bioelectronics,2018,113:95−100. doi: 10.1016/j.bios.2018.05.001
    [81]
    AMADEO Sena Torralba, DUY Ba Ngo, CLAUDIO Parolo, et al. Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy[J]. Biosensors and Bioelectronics,2020,168:112559. doi: 10.1016/j.bios.2020.112559
  • Cited by

    Periodical cited type(9)

    1. 徐嘉欣,罗哲,何安,黄潘钿,沈金鹏,郭俊斌,苗建银. 南珠贝壳珍珠层源抗氧化肽的制备及对酪氨酸酶的抑制活性. 食品工业科技. 2025(06): 242-251 . 本站查看
    2. 刘洋,白家瑞,周先加,毛海峰. 牦牛皮酶法脱毛工艺优化及其对食用品质的影响. 中国皮革. 2024(04): 38-44 .
    3. 和金泽,崔浩然,李钰芳,郑文涛,彭清雅,李丽,黄艾祥. 中甸牦牛乳酪蛋白源生物活性肽的鉴定及抗氧化活性. 乳业科学与技术. 2024(06): 1-7 .
    4. 王增丽,付坚,何同,王雪峰,范江平,黄艾祥. 青刺果粕抗氧化肽的酶法制备工艺优化及体外抗氧化活性分析. 现代食品科技. 2024(12): 49-56 .
    5. 李玉婷,张天宝,杜慧玲,郭继虎,张鸣慧,亢芬,张佳乐. 黄粉虫酶解产物的制备及活性研究. 食品科技. 2023(04): 245-251 .
    6. 杨宝强,刘生杰. 响应面法优化猴头菇蛋白抗氧化肽工艺及抗运动疲劳活性研究. 粮食与油脂. 2023(05): 142-147 .
    7. 马凤,叶灏铎,夏珍,徐燕,孙世利,曹庸,苗建银. 英红九号茶蛋白ACE抑制肽的制备、氨基酸组成及不同超滤组分的活性评价. 现代食品科技. 2023(07): 237-245 .
    8. 张丙云,蔡早宁,王珈玮,潘立超,郭晓鹏,范文广,任海伟. 基于文献计量分析的动物源活性肽领域的态势分析. 食品工业科技. 2022(08): 320-328 . 本站查看
    9. 康澳,巩思佳,陈可菁,李子豪,郑雪韵,陈冰冰,陈文浩,曹庸,苗建银. 固态发酵制备辣木叶活性肽及其抗氧化活性. 现代食品科技. 2022(06): 105-115 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return