Citation: | JIANG Hao, SUN Tao, YAO Haoyu, et al. Research Progress of Edible Fungal Polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(12): 447−456. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070006. |
[1] |
XIE J P, YUN H, DONG H G, et al. Simultaneous extraction, separation and purification of microbial genomic DNA and total RNA from acidic habitat samples[J]. Analytical Methods,2015,7(3):909−917. doi: 10.1039/C4AY01608D
|
[2] |
PARNIAKOV O, LEBOVKA N I, VAN HECKE E, et al. Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus bisporus)[J]. Food and Bioprocess Technology,2014,7(1):174−183. doi: 10.1007/s11947-013-1059-y
|
[3] |
ZHAO Y M, SONG J H, WANG J, et al. Optimization of cellulase‐assisted extraction process and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai[J]. Journal of the Science of Food and Agriculture,2016,96(13):4484−4491. doi: 10.1002/jsfa.7662
|
[4] |
RUTHES A C, SMIDERLE F R, IACOMINI M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects[J]. Carbohydrate Polymers,2016,136:358−375. doi: 10.1016/j.carbpol.2015.08.061
|
[5] |
WANG Q, WANG F, XU Z, et al. Bioactive mushroom polysaccharides: A review on monosaccharide composition, biosynthesis and regulation[J]. Molecules,2017,22(6):955. doi: 10.3390/molecules22060955
|
[6] |
TABARSA M, YOU S G, YELITHAO K, et al. Isolation, structural elucidation and immuno-stimulatory properties of polysaccharides from Cuminum cyminum[J]. Carbohydrate Polymers,2020,230:115636. doi: 10.1016/j.carbpol.2019.115636
|
[7] |
LI Q Z, WU D, ZHOU S, et al. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages[J]. Carbohydrate Polymers,2016,144:196−204. doi: 10.1016/j.carbpol.2016.02.051
|
[8] |
ZHANG Y, ZENG Y, MEN Y, et al. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae[J]. International Journal of Biological Macromolecules,2018,115:978−984. doi: 10.1016/j.ijbiomac.2018.04.145
|
[9] |
姜艳红, 张玲帆, 吕瑛, 等. 杏鲍菇多糖PEP-2的结构表征及其对肝癌细胞HepG-2抑制作用的研究[J]. 食品工业科技,2016,37(19):111−116. [JIANG Y H, ZHANG L F, LÜ Y, et al. Chemical characterization of Pleurotus eryngii polysaccharide PEP-2 and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cell[J]. Science and Technology of Food Industry,2016,37(19):111−116.
JIANG Y H, ZHANG L F, LÜ Y, et al. Chemical characterization of Pleurotus eryngii polysaccharide PEP-2 and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cell[J]. Science and Technology of Food Industry, 2016, 37(19): 111-116.
|
[10] |
WEN L, GAO Q, MA C, et al. Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging[J]. Journal of Functional Foods,2016,20:400−410. doi: 10.1016/j.jff.2015.11.014
|
[11] |
LI Q, WANG W, ZHU Y, et al. Structural elucidation and antioxidant activity a novel Se-polysaccharide from Se-enriched Grifola frondosa[J]. Carbohydrate Polymers,2017,161:42−52. doi: 10.1016/j.carbpol.2016.12.041
|
[12] |
BARBOSA J R, DOS SANTOS FREITAS M M, DA SILVA MARTINS L H, et al. Polysaccharides of mushroom Pleurotus spp. : New extraction techniques, biological activities and development of new technologies[J]. Carbohydrate Polymers,2020,229:115550. doi: 10.1016/j.carbpol.2019.115550
|
[13] |
RUTHES A C, SMIDERLE F R, IACOMINI M. D-glucans from edible mushrooms: A review on the extraction, purification and chemical characterization approaches[J]. Carbohydrate Polymers,2015,117:753−761. doi: 10.1016/j.carbpol.2014.10.051
|
[14] |
ZHANG M, CUI S W, CHEUNG P C K, et al. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity[J]. Trends in Food Science & Technology,2007,18(1):4−19.
|
[15] |
MORALES D, SMIDERLE F R, VILLALVA M, et al. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes[J]. Journal of Functional Foods,2019,60:103446. doi: 10.1016/j.jff.2019.103446
|
[16] |
SU C H, LAI M N, NG L T. Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa[J]. Food Chemistry,2017,220:400−405. doi: 10.1016/j.foodchem.2016.09.181
|
[17] |
WANG Z B, PEI J J, MA H L, et al. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides[J]. Carbohydrate Polymers,2014,109:49−55. doi: 10.1016/j.carbpol.2014.03.057
|
[18] |
SERMWITTAYAWONG D, PATNINAN K, PHOTHIPHIPHIT S, et al. Purification, characterization, and biological activities of purified polysaccharides extracted from the Gray oyster mushroom [Pleurotus sajor-caju (Fr.) Sing.][J]. Journal of Food Biochemistry,2018,42(5):e12606. doi: 10.1111/jfbc.12606
|
[19] |
BAEVA E, BLEHA R, LAVROVA E, et al. Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: Isolation and structural characterization[J]. Molecules,2019,24(15):2740. doi: 10.3390/molecules24152740
|
[20] |
SZWENGIEL A, STACHOWIAK B. Deproteinization of water-soluble ß-glucan during acid extraction from fruiting bodies of Pleurotus ostreatus mushrooms[J]. Carbohydrate Polymers,2016,146:310−319. doi: 10.1016/j.carbpol.2016.03.015
|
[21] |
CHEN X Y, JI H Y, XU X M, et al. Optimization of polysaccharide extraction process from Grifola frondosa and its antioxidant and anti-tumor research[J]. Journal of Food Measurement and Characterization,2019,13(1):144−153. doi: 10.1007/s11694-018-9927-9
|
[22] |
ZHANG L, WANG M. Polyethylene glycol-based ultrasound-assisted extraction and ultrafiltration separation of polysaccharides from Tremella fuciformis (snow fungus)[J]. Food and Bioproducts Processing,2016,100:464−468. doi: 10.1016/j.fbp.2016.09.007
|
[23] |
GIL-RAMÍREZ A, SMIDERLE F R, MORALES D, et al. Strengths and weaknesses of the aniline-blue method used to test mushroom (1→ 3)-β-d-glucans obtained by microwave-assisted extractions[J]. Carbohydrate Polymers,2019,217:135−143. doi: 10.1016/j.carbpol.2019.04.051
|
[24] |
WANG N, ZHANG Y, WANG X, et al. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods[J]. International Journal of Biological Macromolecules,2016,83:103−110. doi: 10.1016/j.ijbiomac.2015.11.032
|
[25] |
LI L, YANG X, PAN L, et al. Comparing three methods of extraction of Auricularia auricula polysaccharides[J]. Current Topics in Nutraceutical Research,2019,17(1):7−11.
|
[26] |
FAN Y N, WU X Y, ZHANG M, et al. Physical characteristics and antioxidant effect of polysaccharides extracted by boiling water and enzymolysis from Grifola frondosa[J]. International Journal of Biological Macromolecules,2011,48(5):798−803. doi: 10.1016/j.ijbiomac.2011.03.013
|
[27] |
HUAMÁN-LEANDRO L R, GONZÁLEZ-MUÑOZ M J, FERNÁNDEZ-DE-ANA C, et al. Autohydrolysis of Lentinus edodes for obtaining extracts with antiradical properties[J]. Foods,2020,9(1):74. doi: 10.3390/foods9010074
|
[28] |
RODRÍGUEZ-SEOANE P, DÍAZ-REINOSO B, GONZÁLEZ-MUÑOZ M J, et al. Innovative technologies for the extraction of saccharidic and phenolic fractions from Pleurotus eryngii[J]. LWT-Food Science and Technology,2019,101:774−782. doi: 10.1016/j.lwt.2018.11.062
|
[29] |
WANG Y F, JIA J X, REN X J, et al. Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom[J]. International Journal of Biological Macromolecules,2018,120:1760−1769. doi: 10.1016/j.ijbiomac.2018.09.209
|
[30] |
WU Z W, ZHANG M X, XIE M H, et al. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1[J]. Carbohydrate Polymers,2016,137:541−548. doi: 10.1016/j.carbpol.2015.11.010
|
[31] |
GUO X, ZOU X, SUN M. Optimization of extraction process by response surface methodology and preliminary characterization of polysaccharides from Phellinus igniarius[J]. Carbohydrate Polymers,2010,80(2):344−349. doi: 10.1016/j.carbpol.2009.11.028
|
[32] |
LIU Y, ZHOU Y, LIU M, et al. Extraction optimization, characterization, antioxidant and immunomodulatory activities of a novel polysaccharide from the wild mushroom Paxillus involutus[J]. International Journal of Biological Macromolecules,2018,112:326−332. doi: 10.1016/j.ijbiomac.2018.01.132
|
[33] |
ZHANG J X, WEN C T, GU J Y, et al. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes[J]. International Journal of Biological Macromolecules,2019,123:1002−1011. doi: 10.1016/j.ijbiomac.2018.11.194
|
[34] |
ZHU M, NIE P, LIANG Y K, et al. Optimizing conditions of polysaccharide extraction from Shiitake mushroom using response surface methodology and its regulating lipid metabolism[J]. Carbohydrate Polymers,2013,95(2):644−648. doi: 10.1016/j.carbpol.2013.03.035
|
[35] |
XUE D N, FARID M M. Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus)[J]. Innovative Food Science & Emerging Technologies,2015,29:178−186.
|
[36] |
YI Y, XU W, WANG H X, et al. Natural polysaccharides experience physiochemical and functional changes during preparation: A review[J]. Carbohydrate Polymers,2020,234:115896. doi: 10.1016/j.carbpol.2020.115896
|
[37] |
KLAUS A, KOZARSKI M, NIKSIC M, et al. Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune[J]. LWT-Food Science and Technology,2011,44(10):2005−2011. doi: 10.1016/j.lwt.2011.05.010
|
[38] |
KE L Q. Optimization of ultrasonic extraction of polysaccharides from Lentinus edodes based on enzymatic treatment[J]. Journal of Food Processing and Preservation,2015,39(3):254−259. doi: 10.1111/jfpp.12228
|
[39] |
ALZORQI I, SUDHEER S, LU T J, et al. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity[J]. Ultrasonics Sonochemistry,2017,35:531−540. doi: 10.1016/j.ultsonch.2016.04.017
|
[40] |
LI X Y, WANG L. Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides[J]. International Journal of Biological Macromolecules,2016,83:270−276. doi: 10.1016/j.ijbiomac.2015.11.060
|
[41] |
MARIĆ M, GRASSINO A N, ZHU Z, et al. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction[J]. Trends in Food Science & Technology,2018,76:28−37.
|
[42] |
XU N, SUN Y H, GUO X L, et al. Optimization of ultrasonic-microwave synergistic extraction of polysaccharides from Morchella conica[J]. Journal of Food Processing and Preservation,2018,42(2):e13423. doi: 10.1111/jfpp.13423
|
[43] |
YOU Q H, YIN X L, ZHANG S N, et al. Extraction, purification, and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai[J]. Carbohydrate Polymers,2014,99:1−10. doi: 10.1016/j.carbpol.2013.07.088
|
[44] |
YU G, YUE C, ZANG X, et al. Purification, characterization and in vitro bile salt-binding capacity of polysaccharides from Armillaria mellea mushroom[J]. Czech Journal of Food Sciences,2019,37(1):51−56. doi: 10.17221/182/2018-CJFS
|
[45] |
YUAN Y, LIU Y, LIU M D, et al. Optimization extraction and bioactivities of polysaccharide from wild Russula griseocarnosa[J]. Saudi Pharmaceutical Journal,2017,25(4):523−530. doi: 10.1016/j.jsps.2017.04.018
|
[46] |
BISHOP K S, KAO C H J, XU Y, et al. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals[J]. Phytochemistry,2015,114:56−65. doi: 10.1016/j.phytochem.2015.02.015
|
[47] |
POKHREL C P, OHGA S. Submerged culture conditions for mycelial yield and polysaccharides production by Lyophyllum decastes[J]. Food Chemistry,2007,105(2):641−646. doi: 10.1016/j.foodchem.2007.04.033
|
[48] |
KIM S W, HWANG H J, XU C P, et al. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738[J]. Journal of Applied Microbiology,2003,94(1):120−126. doi: 10.1046/j.1365-2672.2003.01754.x
|
[49] |
SHU C H, HSU H J. Effects of sodium chloride on the production of bioactive exopolysaccharides in submerged cultures of Phellinus linteus[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology,2008,83(5):618−624.
|
[50] |
XU C, GENG L, ZHANG W. Production of extracellular polysaccharides by the medicinal mushroom Trametes trogii (higher basidiomycetes) in stirred-tank and airlift reactors[J]. International Journal of Medicinal Mushrooms,2013,15(2):183−189. doi: 10.1615/IntJMedMushr.v15.i2.70
|
[51] |
SHIH I L, CHOU B W, CHEN C C, et al. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa[J]. Bioresource Technology,2008,99(4):785−793. doi: 10.1016/j.biortech.2007.01.030
|
[52] |
PENG L, LI J, LIU Y, et al. Effects of mixed carbon sources on galactose and mannose content of exopolysaccharides and related enzyme activities in Ganoderma lucidum[J]. Rsc Advances,2016,6(45):39284−39291. doi: 10.1039/C6RA04798J
|
[53] |
XU J W, JI S L, LI H J, et al. Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene[J]. Bioprocess and Biosystems Engineering,2015,38(2):399−405. doi: 10.1007/s00449-014-1279-1
|
[54] |
LI M, CHEN T, GAO T, et al. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose[J]. Fungal Genetics and Biology,2015,82:251−263. doi: 10.1016/j.fgb.2015.07.012
|
[55] |
PENG L, QIAO S, XU Z, et al. Effects of culture conditions on monosaccharide composition of Ganoderma lucidum exopolysaccharide and on activities of related enzymes[J]. Carbohydrate Polymers,2015,133:104−109. doi: 10.1016/j.carbpol.2015.07.014
|
[56] |
GONG P, WANG S, LIU M, et al. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review[J]. Carbohydrate Research,2020,494:108037. doi: 10.1016/j.carres.2020.108037
|
[57] |
FOGLI S, PORTA C, DEL RE M, et al. Optimizing treatment of renal cell carcinoma with VEGFR-TKIs: A comparison of clinical pharmacology and drug-drug interactions of anti-angiogenic drugs[J]. Cancer Treatment Reviews,2020,84:101966. doi: 10.1016/j.ctrv.2020.101966
|
[58] |
ZHANG Y, LI S, WANG X, et al. Advances in lentinan: Isolation, structure, chain conformation and bioactivities[J]. Food Hydrocolloids,2011,25(2):196−206. doi: 10.1016/j.foodhyd.2010.02.001
|
[59] |
ZHANG S, NIE S, HUANG D, et al. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system[J]. Journal of Agricultural and Food Chemistry,2014,62(7):1581−1589. doi: 10.1021/jf4053012
|
[60] |
LI S, GAO A, DONG S, et al. Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta[J]. International Journal of Biological Macromolecules,2017,96:26−34. doi: 10.1016/j.ijbiomac.2016.12.007
|
[61] |
YANG M Y, BELWAL T, DEVKOTA H P, et al. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review[J]. Trends in Food Science & Technology,2019,92:94−110.
|
[62] |
CUI Y, YAN H, ZHANG X. Preparation of Lentinula edodes polysaccharide-calcium complex and its immunoactivity[J]. Bioscience, Biotechnology, and Biochemistry,2015,79(10):1619−1623. doi: 10.1080/09168451.2015.1044930
|
[63] |
MALLICK S K, MAITI S, BHUTIA S K, et al. Immunostimulatory properties of a polysaccharide isolated from Astraeus hygrometricus[J]. Journal of Medicinal Food,2010,13(3):665−672. doi: 10.1089/jmf.2009.1300
|
[64] |
ZHANG X, QI C, GUO Y, et al. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models[J]. Carbohydrate Polymers,2016,149:186−206. doi: 10.1016/j.carbpol.2016.04.097
|
[65] |
PERERA N, YANG F L, CHERN J, et al. Carboxylic and O-acetyl moieties are essential for the immunostimulatory activity of glucuronoxylomannan: A novel TLR4 specific immunostimulator from Auricularia auricula-judae[J]. Chemical Communications,2018,54(51):6995−6998. doi: 10.1039/C7CC09927D
|
[66] |
KOZARSKI M, KLAUS A, JAKOVLJEVIC D, et al. Antioxidants of edible mushrooms[J]. Molecules,2015,20(10):19489−19525. doi: 10.3390/molecules201019489
|
[67] |
SU Y, LI L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales[J]. Carbohydrate Polymers,2020,229:115407. doi: 10.1016/j.carbpol.2019.115407
|
[68] |
KHATUA S, ACHARYA K. Alkaline extractive crude polysaccharide from Russula senecis possesses antioxidant potential and stimulates innate immunity response[J]. Journal of Pharmacy and Pharmacology,2017,69(12):1817−1828. doi: 10.1111/jphp.12813
|
[69] |
JING H, LI J, ZHANG J, et al. The antioxidative and anti-aging effects of acidic-and alkalic-extractable mycelium polysaccharides by Agrocybe aegerita (Brig.) Sing[J]. International Journal of Biological Macromolecules,2018,106:1270−1278. doi: 10.1016/j.ijbiomac.2017.08.138
|
[70] |
TENG J F, LEE C H, HSU T H, et al. Potential activities and mechanisms of extracellular polysaccharopeptides from fermented Trametes versicolor on regulating glucose homeostasis in insulin-resistant HepG2 cells[J]. PloS One,2018,13(7):e0201131. doi: 10.1371/journal.pone.0201131
|
[71] |
MA H T, HSIEH J F, CHEN S T. Anti-diabetic effects of Ganoderma lucidum[J]. Phytochemistry,2015,114:109−113. doi: 10.1016/j.phytochem.2015.02.017
|
[72] |
YAMAÇ M, ZEYTINOGLU M, SENTURK H, et al. Effects of black hoof medicinal mushroom, Phellinus linteus (Agaricomycetes), polysaccharide extract in streptozotocin-induced diabetic rats[J]. International Journal of Medicinal Mushrooms,2016,18(4):301−311. doi: 10.1615/IntJMedMushrooms.v18.i4.30
|
[73] |
ZHANG C, LI J, HU C, et al. Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice[J]. Scientific Reports,2017,7(1):1−13. doi: 10.1038/s41598-016-0028-x
|
[74] |
XIAO C, WU Q, ZHANG J, et al. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice[J]. Journal of Ethnopharmacology,2017,196:47−57. doi: 10.1016/j.jep.2016.11.044
|
[75] |
REN Z, LI J, SONG X, et al. The regulation of inflammation and oxidative status against lung injury of residue polysaccharides by Lentinula edodes[J]. International Journal of Biological Macromolecules,2018,106:185−192. doi: 10.1016/j.ijbiomac.2017.08.008
|
[76] |
REN Y, GENG Y, DU Y, et al. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota[J]. The Journal of Nutritional Biochemistry,2018,57:67−76. doi: 10.1016/j.jnutbio.2018.03.005
|
[77] |
XU X, YANG J, NING Z, et al. Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota[J]. Food & Function,2015,6(8):2653−2663.
|
[78] |
LI W J, NIE S P, PENG X P, et al. Ganoderma atrum polysaccharide improves age-related oxidative stress and immune impairment in mice[J]. Journal of Agricultural and Food Chemistry,2012,60(6):1413−1418. doi: 10.1021/jf204748a
|
[79] |
PAN W J, DING Q Y, WANG Y, et al. A bioactive polysaccharide TLH-3 isolated from Tricholoma lobayense protects against oxidative stress-induced premature senescence in cells and mice[J]. Journal of Functional Foods,2018,42:159−170. doi: 10.1016/j.jff.2017.12.070
|
[80] |
PENG X B, LI Q, OU L N, et al. GC-MS, FT-IR analysis of black fungus polysaccharides and its inhibition against skin aging in mice[J]. International Journal of Biological Macromolecules,2010,47(2):304−307. doi: 10.1016/j.ijbiomac.2010.03.018
|