Citation: | JIA Baozhu, CAI Meiling, QIU Zhijing, et al. Development of a Ratiometric Fluorescence Sensor for Ascorbic Acid Based on Oxidase-mimicking Activity of CoOOH Nanoflake[J]. Science and Technology of Food Industry, 2022, 43(8): 273−280. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070003. |
[1] |
WANG C, PAN C, WEI Z, et al. Bionanosensor based on N-doped graphene quantum dots coupled with CoOOH nanosheets and their application for in vivo analysis of ascorbic acid[J]. Analytica Chimica Acta,2020,1100:191−199. doi: 10.1016/j.aca.2019.11.008
|
[2] |
YANG J, MA Q, HUANG F, et al. A New Fluorimetric method for the determination of ascorbic acid[J]. Analytical Letters,1998,31(15):2757−2766. doi: 10.1080/00032719808005341
|
[3] |
CHEN H, LIU Y, LI H, et al. Non-oxidation reduction strategy for highly selective detection of ascorbic acid with dual-ratio fluorescence and colorimetric signals[J]. Sensors and Actuators, 2019, 281: 983−988.
|
[4] |
ZHANG Y, ZHAI J L, LI F L, et al. Green synthesis of gold nanoparticles and their application in colorimetric detection of vitamin C[J]. Chinese Journal of Analytical Chemistry,2020,48:1041−1049.
|
[5] |
ZHUO S J, FANG J, LI M, et al. Manganese (II)-doped carbon dots as effective oxidase mimics for sensitive colorimetric determination of ascorbic acid[J]. Microchimica Acta,2019,186(12):1−8.
|
[6] |
LIU J J, CHEN Y L, WANG W F, et al. "Switch-On" fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-MnO2 probe[J]. Journal of Agricultural and Food Chemistry,2016,64:371−380. doi: 10.1021/acs.jafc.5b05726
|
[7] |
NA W, Li N, SU X. Enzymatic growth of single-layer MnO2 nanosheets in situ: Application to detect alkaline phosphatase and ascorbic acid in the presence of sulfanilic acid functionalized graphene quantum dots[J]. Sensors and Actuators B-Chemical,2018,274:172−179. doi: 10.1016/j.snb.2018.07.116
|
[8] |
LIU J J, CHEN Z T, TANG D S, et al. Graphene quantum dots-based fluorescent probe for turn-on sensing ascorbic acid[J]. Sensors Actuators B Chemical,2015,212:214−219. doi: 10.1016/j.snb.2015.02.019
|
[9] |
BERGOI I, ARNAU P R, DMITRY B, et al. Electrochemical detection of ascorbic acid in artificial sweat using a flexible alginate/CuO-modified electrode[J]. Microchimica Acta,2020,187(9):3231−223.
|
[10] |
CHARLTON H, BONGIWE S, ERIC G, et al. Simultaneous detection of paracetamol, ascorbic acid, and caffeine using a bismuth-silver nanosensor[J]. Electroanalysis,2020,32(12):3098−3107. doi: 10.1002/elan.202060389
|
[11] |
纪文亮, 张美宁, 毛兰群. 鼠脑中维生素C活体电化学分析研究进展[J]. 分析化学,2019,47(10):1559−1571. [JI W L, ZHANG M N, MAO L Q, et al. Recent advances on in vivo electrochemical analysis of vitamin C in rat brain[J]. Chinese Journal of Analytical Chemistry,2019,47(10):1559−1571.
|
[12] |
ATTILA S, SZENDE V, ISTVÁN K, et al. Quantification of plasma and leukocyte vitamin C by high performance liquid chromatography with mass spectrometric detection[J]. Journal of Analytical Chemistry,2020,75(9):1168−1176. doi: 10.1134/S1061934820090038
|
[13] |
赵伟曼, 吕慧娟, 杨伟汉, 等. 高效液相色谱法测定可溶微针贴片中维生素C的含量[J]. 山西医科大学学报, 2019, 50(5): 632−635
ZHAO W M, LYU H J, YANG W H, et al. Determination of vitamin C in dissolving microneedles by high performance liquid chromatography[J] Journal of Shanxi Medical University, 2019, 50(5): 632−635.
|
[14] |
李玉彩, 李响明, 周永妍, 等. RP-HPLC测定含银杏叶提取物的注射液中维生素C的含量[J]. 中国现代中药, 2019, 21(3): 380−382,389
LI Y C, LI X M, ZHOU Y Y, et al. Determination of vitamin C in injection containing ginkgo leaves extract by RP-HPLC[J] Modern Chinese Medicine, 2019, 21(3): 380−382,389.
|
[15] |
LV Y, JIANG C, HU K, et al. In-situ growth of cobalt oxyhydroxide on graphitic-phase C3N4 nanosheets for fluorescence turn-on detection and imaging of ascorbic acid in living cells[J]. Microchimica Acta,2019,186(6):360. doi: 10.1007/s00604-019-3487-5
|
[16] |
LI N, ZHONG Y Q, LIU S G, et al. Smartphone assisted colorimetric and fluorescent triple-channel signal sensor for ascorbic acid assay based on oxidase-like CoOOH nanoflakes[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2020:238.
|
[17] |
LUO L, SONG Y, ZHU C, et al. Fluorescent silicon nanoparticles-based ratiometric fluorescence immunoassay for sensitive detection of ethyl carbamate in red wine[J]. Sensors and Actuators B-Chemical,2018,255:2742−9. doi: 10.1016/j.snb.2017.09.088
|
[18] |
ARAFEH B, FOROUGH G, SAMIRA A, et al. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review[J]. Analytica Chimica Acta,2019,1079:30−58. doi: 10.1016/j.aca.2019.06.035
|
[19] |
WEN S H, ZHONG X L, WU Y D, et al. Colorimetric assay conversion to highly sensitive electrochemical assay for bimodal detection of arsenate based on cobalt oxyhydroxide nanozyme via arsenate absorption[J]. Analytical Chemistry,2019,91(10):6487−97. doi: 10.1021/acs.analchem.8b05121
|
[20] |
LI H, JIN R, KONG D, et al. Switchable fluorescence immunoassay using gold nanoclusters anchored cobalt oxyhydroxide composite for sensitive detection of imidacloprid[J]. Sensors and Actuators B-Chemical,2019,283:207−14. doi: 10.1016/j.snb.2018.12.026
|
[21] |
LIU S G, HAN L, LI N, et al. A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes[J]. Journal of Materials Chemistry B,2018,6(18):2843−50. doi: 10.1039/C7TB03275G
|
[22] |
CHUNG H K, INGLE J D. Fluorimetric kinetic method for the determination of total ascorbic acid with o-phenylenediamine[J]. Analytica Chimica Acta,1991,243:89−95. doi: 10.1016/S0003-2670(00)82544-1
|
[23] |
LI L, WANG C, LIU K, et al. Hexagonal cobalt oxyhydroxide-carbon dots hybridized surface: highly sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia[J]. Analytical Chemistry,2015,87(6):3404−11. doi: 10.1021/ac5046609
|
[24] |
TAN H, MA C, GAO L, et al. Metal–Organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid[J]. Chemistry–A European Journal,2014,20(49):16377−16383. doi: 10.1002/chem.201404960
|
[25] |
DARABDHARA G, SHARMA B, DAS M R, et al. Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection[J]. Sensors and Actuators B: Chemical,2017,238:842−851. doi: 10.1016/j.snb.2016.07.106
|
[26] |
GAO C, ZHU H, CHEN J, et al. Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid[J]. Chinese Chemical Letters,2017,28(5):1006−1012. doi: 10.1016/j.cclet.2017.02.011
|
[27] |
ZHU J, ZHAO Z, LI J, et al. Fluorescent detection of ascorbic acid based on the emission wavelength shift of CdTe quantum dots[J]. Journal of Luminescence,2017,192:47−55. doi: 10.1016/j.jlumin.2017.06.015
|
[28] |
WANG X, LONG C, JIANG Z, et al. In situ synthesis of fluorescent copper nanoclusters for rapid detection of ascorbic acid in biological samples[J]. Analytical Methods,2019,11(36):4580−4585. doi: 10.1039/C9AY01627A
|
[29] |
YAN X, He L, ZHOU C, et al. Fluorescent detection of ascorbic acid using glutathione stabilized Au nanoclusters[J]. Chemical Physics,2019,522:211−213. doi: 10.1016/j.chemphys.2019.03.008
|
[30] |
MA X, LIN S, DANG Y, et al. Carbon dots as an “on-off-on” fluorescent probe for detection of Cu (II) ion, ascorbic acid, and acid phosphatase[J]. Analytical and Bioanalytical Chemistry,2019,411(25SI):6645−6653.
|
[31] |
LIU X, TIAN M, LI C, et al. Polyvinylpyrrolidone-stabilized Pt nanoclusters as robust oxidase mimics for selective detection of ascorbic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,625:126985. doi: 10.1016/j.colsurfa.2021.126985
|
1. |
陈伟洲,王京,刘志侠,吴国振,闫鹤馨,张哲,钟喜林. 花生仁变温湿法脱红衣预处理工艺参数研究. 华中农业大学学报. 2024(05): 242-252 .
![]() | |
2. |
石训,石勇,孙晓瑞. 基于文献计量的枣多糖研究趋势分析. 现代食品. 2023(21): 55-58 .
![]() |