LIU Fangbin, WANG Wei, HUANG Yongchun, et al. Analysis and Evaluation of Seasonal Changes on Nutrient Composition in Muscle of Quasipaa spinosa[J]. Science and Technology of Food Industry, 2022, 43(9): 365−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060281.
Citation: LIU Fangbin, WANG Wei, HUANG Yongchun, et al. Analysis and Evaluation of Seasonal Changes on Nutrient Composition in Muscle of Quasipaa spinosa[J]. Science and Technology of Food Industry, 2022, 43(9): 365−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060281.

Analysis and Evaluation of Seasonal Changes on Nutrient Composition in Muscle of Quasipaa spinosa

More Information
  • Received Date: July 01, 2021
  • Accepted Date: February 23, 2022
  • Available Online: March 01, 2022
  • The analysis of the nutritional composition of the muscle of Quasipaa spinosa in four seasons aimed to provide theoretical basis for the further processing of Quasipaa spinosa. In the processing process, Quasipaa spinosa in the appropriate season could be selected according to the product requirements. Samples of Quasipaa spinosa in four seasons were collected to analyze the differences of muscle basic nutrient composition, amino acids, fatty acids by Soxhlet extraction, Kjeldahl nitrogen determination and chromatography. The results showed that the nutrient composition varied greatly in different seasons. The contents of crude protein (24.79±0.32 g/100 g) and crude fat (1.19±0.17 g/100 g) were the highest in winter, and the contents of water and ash were the highest in autumn. However, 17 kinds of amino acids were all contained in muscles in different seasons, and the contents of lysine (8.73~10.20 g/100 g) was the highest in essential amino acids, and methionine+cysteine was the lowest. The total amino acids (TAA), essential amino acids (EAA) and flavor amino acids (DAA) were the highest in autumn. Valine and methionine+cystine were limiting amino acids, but the first and the second limiting amino acids were different in different seasons. Fatty acids were the most in autumn (18 kinds), and oleic acid (C18:1n9c) content was the highest, while linoleic acid (C18:2n6c) content was the highest in the other three seasons. The muscle nutrient composition of Quasipaa spinosa was significantly affected by seasonal changes.
  • [1]
    斯烈钢, 富裕, 李鸿鹏, 等. 四明山脉溪流区水产经济动物棘胸蛙(Paa spinosa)成体形态性状对体质量和净体质量影响效应的性别差异[J]. 海洋与湖沼,2015,46(3):679−686. [SI L G, FU Y, LI H P, et al. Sex-related differences reflected in the effect of morphological traits on body weight and net body weight of an economic animal, Paa spinosa in streams of siming mountains[J]. Oceanologia Et Limnologia Sinica,2015,46(3):679−686. doi: 10.11693/hyhz20141200337
    [2]
    梅祎芸, 叶容晖, 宋婷婷, 等. 浙江省棘胸蛙养殖现状及发展对策[J]. 浙江农业科学,2015,56(7):1122−1125. [MEI Y Y, YE R H, SONG T T, et al. Current situation and development countermeasures of Quasipaa spinosa in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences,2015,56(7):1122−1125.
    [3]
    舒妙安. 棘胸蛙肌肉营养成分的分析(Ⅰ)一般营养成分的含量及脂肪酸的组成[J]. 浙江大学学报(理学版),2000(4):433−437. [SHU M A. An analysis of the nutritive compositions in muscle of Rana spinosa Ⅱ. contents of normal nutrients and composition of fatty acids[J]. Journal of Zhejiang University (Science Edition),2000(4):433−437.
    [4]
    舒妙安. 棘胸蛙肌肉营养成分的分析Ⅱ. 氨基酸及矿物元素的组成[J]. 浙江大学学报(理学版),2000(5):553−559. [SHU M A. An analysis of the nutritive compositions in muscle of Rana spinosa Ⅱ. compositions of amino acids and mineral elements[J]. Journal of Zhejiang University (Science Edition),2000(5):553−559.
    [5]
    毛剑婷, 刘泽鹏, 张盼, 等. 不同饲料对棘胸蛙蝌蚪生长发育及变态率的影响[J]. 浙江农业科学,2017,58(9):1610−1612. [MAO J T, LIU Z P, ZHANG P, et al. Effects of different diets on growth, development and metamorphosis rate of Quasipaa spinosa tadpoles[J]. Journal of Zhejiang Agricultural Sciences,2017,58(9):1610−1612.
    [6]
    谢永广, 张进, 王怀昕, 等. 不同营养水平与投喂频率对棘胸蛙蝌蚪生长的影响[J]. 水产养殖,2020,41(12):27−32. [XIE Y G, ZHANG J, WANG H X, et al. Effects of different feed composition and feeding frequency on growth performance in tadpole of Quasipaa spinosa[J]. Journal of Aquaculture,2020,41(12):27−32.
    [7]
    MEHER B, ANDRÉ N, MOUNA F, et al. Effects of temperature, density and food quality on larval growth and metamorphosis in the north African green frog Pelophylax saharicus[J]. Journal of Thermal Biology,2014,45:81−86. doi: 10.1016/j.jtherbio.2014.08.006
    [8]
    李潇, 王玲, 张春晓, 等. 啤酒酵母粉替代部分鱼粉对牛蛙生长、抗氧化能力以及肝脏和肠道组织形态学的影响[J]. 动物营养学报,2019,31(4):1864−1876. [LI X, WANG L, ZHANG C X, et al. Effects of partially replacing fish meal with brewer's yeast meal on growth, antioxidant capacity, and liver and intestine tissue morphology of bullfrog (Rana (Lithobates) catesbeiana)[J]. Chinese Journal of Animal Nutrition,2019,31(4):1864−1876.
    [9]
    中国国家标准化管理委员会, 国家食品药品监督管理局. GB 5009.3-2016食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016.

    China National Standardization Administration Committee, State Food and Drug Administration. GB 5009.3-2016 National food safety standard. Determination of moisture in foods[S]. Beijing: Standards Press of China, 2016.
    [10]
    中国国家标准化管理委员会, 国家食品药品监督管理局. GB 5009.6-2016食品安全国家标准 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016.

    China National Standardization Administration Committee, State Food and Drug Administration. GB 5009.6-2016 National food safety standard. Determination of fats in foods[S]. Beijing: Standards Press of China, 2016.
    [11]
    国家卫生和计划生育委员会. GB 5009.4-2016食品安全国家标准 食品中灰分的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. GB 5009.4-2016 National food safety standard. Determination of ash in foods[S]. Beijing: Standards Press of China, 2016.
    [12]
    中国国家标准化管理委员会. GB 5009.5-2016食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.

    China National Standardization Administration Committee. GB 5009.5-2016 National food safety standard. Determination of protein in food[S]. Beijing: Standards Press of China, 2016.
    [13]
    中国国家标准化管理委员会. GB 5009.124-2016食品安全国家标准 食品中氨基酸的测定[S]. 北京: 中国标准出版社, 2016.

    China National Standardization Administration Committee. GB 5009.124-2016 National food safety standard. Determination of amino acids in foods[S]. Beijing: Standards Press of China, 2016.
    [14]
    中国国家标准化管理委员会. GB 5009.168-2016食品安全国家标准 食品中脂肪酸的测定[S]. 北京: 中国标准出版社, 2016.

    China National Standardization Administration Committee. GB 5009.1168-2016 National food safety standard. Determination of fatty acids in foods[S]. Beijing: Standards Press of China, 2016.
    [15]
    PELLET P L, YOUNG V R. Nutritional evaluation of protein foods[M]. Tokyo: The United National University, 1980: 26-29.
    [16]
    PASANEN S, KOSKELA P. Seasonal and age variation in the metabolism of the common frog, Rana temporaria L. in Northern Finland[J]. Comparative Biochemistry and Physiology Part A:Comparative Physiology,1974,47(2):635−654. doi: 10.1016/0300-9629(74)90027-9
    [17]
    温安祥, 曾静康, 何涛. 棘腹蛙肌肉嫩度及营养成分的初步分析[J]. 四川动物,2001(4):211−212. [WEN A X, ZENG J K, HE T. Analysis on meat tenderness and nutritional composition of Rana boulengeri[J]. Sichuan Journal of Zoology,2001(4):211−212. doi: 10.3969/j.issn.1000-7083.2001.04.014
    [18]
    刘丽, 刘楚吾, 林东年, 等. 泰国虎纹蛙与中国虎纹蛙肌肉的营养成分比较[J]. 水利渔业,2008(3):64−66. [LIU L, LIU C W, LIN D N, et al. Comparison of nutritional components in muscle of Rana tigrina rugulosa and R. tigrina cantor[J]. Journal of Hydroecology,2008(3):64−66. doi: 10.3969/j.issn.1003-1278.2008.03.024
    [19]
    王彬彬, 张文革, 夏艳洁. 中国林蛙腿肉的营养成分分析与评价[J]. 经济动物学报,2012,16(2):89−93. [WANG B B, ZHANG W G, XIA Y J. Evaluation of nutritional components in the muscle of Rana chensinensis[J]. Journal of Economic Animal,2012,16(2):89−93.
    [20]
    方卫东, 鲁康乐, 张春晓, 等. 豆粕替代鱼粉对牛蛙生长、体组成、消化酶活力及肝脏生化指标的影响[J]. 水产学报,2016,40(11):1742−1752. [FANG W D, LU K L, ZHANG C X, et al. Effects of fish meal replacement by soybean meal on growth, body composition, digestive enzyme activities and hepatic biochemical indices of Rana (Lithobates) catesbeiana[J]. Journal of Fisheries of China,2016,40(11):1742−1752.
    [21]
    何志刚, 伍远安, 徐永福, 等. 野生与养殖黑斑蛙肌肉营养品质的比较分析[J]. 水产科学,2019,38(4):506−513. [HE Z G, WU Y A, XU Y F, et al. Comparative analysis of muscle nutritional quality of wild and cultured Rana black speckled[J]. Fisheries Science,2019,38(4):506−513.
    [22]
    杨鲜, 祝慧凤, 王涛, 等. 重庆巫山等多地党参氨基酸及营养价值比较与分析[J]. 食品科学,2014,35(15):251−257. [YANG X, ZHU H F, WANG T, et al. Comparative analysis of amino acid composition and nutritional value of roots of Codonopsis pilosula from Wushan and other growing regions in China[J]. Food Science,2014,35(15):251−257. doi: 10.7506/spkx1002-6630-201415051
    [23]
    何志刚, 王冬武, 徐永福, 等. 黑斑蛙肌肉营养成分分析及评价[J]. 中国饲料,2018(17):74−77. [HE Z G, WANG D W, XU Y F, et al. Analysis and evaluation of nutrition composition in the muscle of Rana nigromaculata[J]. China Feed,2018(17):74−77.
    [24]
    戴聪杰, 耿宝荣. 虎纹蛙的含肉率及蛙肉和蛙皮氨基酸组成分析[J]. 动物学杂志,2003,38(2):60−64. [DAI C J, GENG B R. Composition of amino acids in the muscle and skin of Hoplobatrachus rugulosa[J]. Chinese Journal of Zoology,2003,38(2):60−64. doi: 10.3969/j.issn.0250-3263.2003.02.016
    [25]
    宋旻鹏, 汪金海, 陈智威, 等. 周期性饥饿再投喂对长蛸存活、生长以及肌肉脂肪酸和氨基酸的影响[J]. 水生生物学报,2020,44(2):372−378. [SONG M P, WANG J H, CHEN Z W, et al. Effects of cyclical starvation-refeeding on survival, growth, and muscle fatty acids, amino acids of Octopus minor[J]. Acta Hydrobiologica Sinica,2020,44(2):372−378. doi: 10.7541/2020.045
    [26]
    牛永刚. 高山倭蛙冬眠的生理生化特征及分子机制[D]. 兰州: 兰州大学, 2019.

    NIU Y G. Physiological and biochemical characteristics and underlying molecular mechanisms of hibernation in Nanorana parkeri[D]. Lanzhou: Lanzhou University, 2019.
    [27]
    SCAPIN S, BALDINI P, LULY P. Phospholipid and fatty acid composition of frog (Rana esculenta) liver—a circannual study[J]. Lipids,1990,25(8):443−449. doi: 10.1007/BF02538086
    [28]
    FALKENSTEIN F, GEISER F, WATSON K, et al. Dietary fats and body lipid composition in relation to hibernation in free-ranging echidnas[J]. Journal of Comparative Physiology B,2001,171(3):189−194. doi: 10.1007/s003600000157
    [29]
    陈斌, 冯健, 吴彬, 等. 饥饿对太平洋鲑(Oncorhynchus spp.) 鱼体脂肪与脂肪酸的影响[J]. 海洋与湖沼,2012,43(6):1247−1253. [CHEN B, FENG J, WU B, et al. the effects of starvation on fat and fatty acids composition in pacific salmon (Oncorhynchus spp.)[J]. Oceanologia Et Limnologia Ainica,2012,43(6):1247−1253. doi: 10.11693/hyhz201206031031
    [30]
    陈文静, 丁立云, 邓勇辉, 等. 饥饿胁迫对彭泽鲫幼鱼形体指标、肌肉脂肪酸组成和肝脏脂蛋白脂酶基因表达的影响[J]. 动物营养学报,2020,32(6):2782−2790. [CHEN W J, DING L Y, DENG Y H, et al. Effects of starvation stress on physical indices, muscle fatty acid composition and liver lipoprotein lipase gene expression of juvenile crucian carp (Carassius auratus var. Pengze)[J]. Chinese Journal of Animal Nutrition,2020,32(6):2782−2790. doi: 10.3969/j.issn.1006-267x.2020.06.038
    [31]
    李妍妍, 郑卫星, 王日昕, 等. 林蛙营养成分的多元分析[J]. 食品科学,2007(12):472−475. [LI Y Y, ZHENG W X, WANG R X, et al. Nutritive material of Rana chensinensis by multivariation analysis methods[J]. Food Science,2007(12):472−475. doi: 10.3321/j.issn:1002-6630.2007.12.114
    [32]
    罗钦, 黄敏敏, 任丽花, 等. 澳洲金鲈鱼种肌肉中氨基酸与脂肪酸组成的分析[J]. 食品安全质量检测学报,2020,11(11):3607−3613. [LUO Q, HUANG M M, REN L H, et al. Analysis on the amino acids and fatty acids compositions in muscle of juvenile Australian golden perch[J]. Journal of Food Safety and Quality,2020,11(11):3607−3613.
  • Cited by

    Periodical cited type(7)

    1. 刘亚兵,罗学尹,戴宇樵,王敏,蒲璐璐,潘科,刘忠英,李琴. 灵芝菌处理对夏秋黑茶梗品质的影响. 沈阳农业大学学报. 2023(03): 289-295 .
    2. 孟圆,夏婷,程艳,耿贝贝,权冰艳,宋睿喆,于金浩,王敏,白晓丽. 碱法提取普洱茶渣膳食纤维的工艺优化. 食品研究与开发. 2023(18): 158-164 .
    3. 高丽娟,郜春霞,吴佳琪,吴修祯,李凯. 响应面法优化爬山虎不溶性膳食纤维反提取工艺. 河南农业. 2023(36): 56-59 .
    4. 许婧. 茶叶保健食品加工技术及发展趋势分析. 现代食品. 2022(04): 70-73 .
    5. 王彤辉,相堂永,徐姗,顾依,任舒静,江勇,杨帆,陈志鹏. 萌芽黑青稞喷干粉的制备工艺优化. 食品研究与开发. 2022(10): 156-165 .
    6. 皮小弟,罗瑞婷,李叶青,邹志群,吴思毅,黄志远. 豆渣水溶性膳食纤维的复合酶法提取及其应用于可食性膜研究. 保鲜与加工. 2022(10): 56-62 .
    7. 牛潇潇,王杰,王宁,梁亮,韩育梅,杨杨. 超微粉碎对马铃薯渣理化性质和微观结构的影响. 中国粮油学报. 2022(12): 84-91 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (177) PDF downloads (17) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return