Citation: | KE Liangjian, LU Xiuyuan, WANG Xingquan, et al. Degradation of Imidacloprid,Acetamiprid and Triazophos in Aqueous Solution by Dielectric Barrier Discharge Low-Temperature Plasma[J]. Science and Technology of Food Industry, 2022, 43(7): 262−272. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060277. |
[1] |
YANG F W, LI Y X, REN F Z, et al. Toxicity, residue, degradation and detection methods of the insecticide triazophos[J]. Environmental Chemistry Letters,2019,17(4):1769−1785. doi: 10.1007/s10311-019-00910-z
|
[2] |
王圣印, 刘永杰, 周仙红, 等. 新烟碱类杀虫剂吡虫啉的研究进展[J]. 江西农业学报,2012,24(3):76−79. [WANG S Y, LIU Y J, ZHOU X H, et al. Research progress in new neonicotinoid insecticide imidacloprid[J]. Acta Agriculturae Jiangxi,2012,24(3):76−79. doi: 10.3969/j.issn.1001-8581.2012.03.024
|
[3] |
周育, 庾琴, 侯慧锋, 等. 新型烟碱类杀虫剂啶虫脒研究进展[J]. 植物保护,2006,32(3):16−20. [ZHOU Y, YU Q, HOU H F, et al. Progress in chloronicotinyl insecticide acetamiprid[J]. Plant Protection,2006,32(3):16−20. doi: 10.3969/j.issn.0529-1542.2006.03.005
|
[4] |
刘长令. 世界农药大全[M]. 北京: 化学工业出版社, 2012: 244−256.
LIU C L. World pesticide encyclopedia[M]. Beijing: Chemical Industry Press, 2012: 244−256.
|
[5] |
KLEIN M. Scientific opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid[J]. European Food Safety Authority Journal,2013,12(11):3471.
|
[6] |
ANADON A, ARES I, MARTINEZ M, et al. Neurotoxicity of neonicotinoids[J]. Advances in Neurotoxicology,2020,4:167−207.
|
[7] |
STIVAKTAKIS P D, KAVVALAKIS M P, TZATZARAKIS M N, et al. Long-term exposure of rabbits to imidaclorpid as quantified in blood induces genotoxic effect[J]. Chemosphere,2016,149:108−113. doi: 10.1016/j.chemosphere.2016.01.040
|
[8] |
王未, 黄从建, 张满成, 等. 我国区域性水体农药污染现状研究分析[J]. 环境保护科学,2013,39(5):5−9. [WANG W, HUANG C J, ZHANG M C, et al. Study on status of regional water pollution by pesticides in China[J]. Environmental Protection Science,2013,39(5):5−9. doi: 10.3969/j.issn.1004-6216.2013.05.002
|
[9] |
张俊, 王定勇. 蔬菜的农药污染现状及农药残留危害[J]. 农村经济与科技,2004,15(3):16−17. [ZHANG J, WANG D Y. Present situation of pesticide pollution in vegetables and harm of pesticide residues[J]. Rural Economy and Science-Technology,2004,15(3):16−17. doi: 10.3969/j.issn.1007-7103.2004.03.008
|
[10] |
SZPYRKA E, SŁOWIK-BOROWIEC M, MATYASZEK A, et al. Pesticide residues in raw agricultural products from the south-eastern region of Poland and the acute risk assessment[J]. Roczniki Panstwowego Zakadu Higieny,2016,67(3):237−245.
|
[11] |
GERRITY D, STANFORD B D, TRENHOLM R A, et al. An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation[J]. Water Research,2010,44(2):493−504. doi: 10.1016/j.watres.2009.09.029
|
[12] |
孟月东, 钟少锋, 熊新阳. 低温等离子体技术应用研究进展[J]. 物理,2006,35(2):140−146. [MENG Y D, ZHONG S F, XIONG X Y. Advances in applied low-temperature plasma technology[J]. Physics,2006,35(2):140−146. doi: 10.3321/j.issn:0379-4148.2006.02.009
|
[13] |
丛来欣, 黄明明, 章建浩, 等. 高压电场低温等离子体对马拉硫磷的降解效能及降解途径[J]. 食品工业科技,2020,41(21):37−42+47. [CONG L X, HUANG M M, ZHANG J H, et al. The degradation efficiency and pathway of malathion treated by high voltage electric field cold plasma[J]. Science and Technology of Food Industry,2020,41(21):37−42+47.
|
[14] |
陈桂芸, 赵爽, 何适, 等. 低温等离子体改性玉米醇溶蛋白基膜表面亲水性的研究[J]. 食品研究与开发, 2018, 39(20): 8−12.
CHEN G Y, ZHAO S, HE S, et al. Effect of cold plasma on the structure and surface hydrophilicity of zein-based films[J]. Food Research and Development, 2018, 39(20): 8−12.
|
[15] |
林向阳, 李雁晖, 黄彬红, 等. 介质阻挡放电等离子体(DBDP)对橙汁杀菌及钝化酶的影响[J]. 中国食品学报,2010,10(6):14−21. [LIN X Y, LI Y H, HUANG B H, et al. Effect of dielectric barrier discharge plasma(DBDP) on the sterilization and enzyme inactivation of orange juice[J]. Journal of Chinese Institute of Food Science and Technology,2010,10(6):14−21. doi: 10.3969/j.issn.1009-7848.2010.06.003
|
[16] |
刘品, 陈静. 低温等离子体对南美白对虾防黑变及品质的研究[J]. 食品工业,2018,39(11):184−187. [LIU P, CHEN J. Study on prevention of blackening of penaeus vannamei by low temperature plasma[J]. The Food Industry,2018,39(11):184−187.
|
[17] |
李斌, 殷桃, 张媛媛, 等. 紫外光照射降解水中吡虫啉和啶虫脒的研究[J]. 现代食品科技,2014,30(5):145−149. [LI B, YIN T, ZHANG Y Y, et al. Degradation of imidacloprid and acetamiprid in aqueous solution by ultraviolet irradiation[J]. Modern Food Science and Technology,2014,30(5):145−149.
|
[18] |
李星, 王兴权, 杨洪宇, 等. 介质阻挡放电等离子体降解制药企业废水污染物的研究[J]. 电工电能新技术,2020,39(1):76−81. [LI X, WANG X Q, YANG H Y, et al. Research of degradation on wastewater pollutants discharged from pharmaceutical company by dielectric barrier discharge plasma[J]. Advanced Technology of Electrical Engineering and Energy,2020,39(1):76−81.
|
[19] |
FREISSINET C, VAUCLIN M, ERLICH M. Comparison of first-order analysis and fuzzy set approach for the evaluation of imprecision in a pesticide groundwater pollution screening model[J]. Journal of Contaminant Hydrology,1999,37(1/2):21−43.
|
[20] |
程虎, 叶齐政, 覃世勋, 等. 放电等离子体水处理中有机物的降解速率[J]. 高电压技术,2007,33(2):150−153,185. [CHENG H, YE Q Z, QIN S X, et al. Influential factors on degradation rate of organic contamination in water treatment by discharge plasma[J]. High Voltage Engineering,2007,33(2):150−153,185. doi: 10.3969/j.issn.1003-6520.2007.02.036
|
[21] |
黄芳敏, 王红林, 严宗诚, 等. 介质阻挡放电等离子体对亚甲基蓝的降解[J]. 环境科学与技术,2010,33(2):35−38. [HUANG F M, WANG H L, YAN Z C, et al. Degradation of methylene blue by dielectric barrier discharge plasma[J]. Environmental Science and Technology,2010,33(2):35−38. doi: 10.3969/j.issn.1003-6504.2010.02.009
|
[22] |
宋玲. 气相介质阻挡放电活性粒子喷射降解水中有机污染物的研究[D]. 大连: 大连理工大学, 2008.
SONG L. Degradation of organic compounds in wastewater by active species sprayed in a gas phase dieleetric barrier discharge system[D]. Dalian: Dalian University of Technology, 2008.
|
[23] |
司唤. 啶虫脒水解机理的理论研究[D]. 重庆: 重庆师范大学, 2016.
SI H. Theoretical studies on the hydrolysis mechanism of acetamiprid[D]. Chongqing: Chongqing Normal University, 2016.
|
[24] |
郑巍, 宣日成, 刘维屏. 新农药吡虫啉水解动力学和机理研究[J]. 环境科学学报,1999(1):103−106. [ZHENG W, XUAN R C, LIU W P. Kinetics and mechanism of pesticide imidacloprid hydrolysis[J]. Acta Scientiae Circumstantiae,1999(1):103−106.
|
[25] |
LUKE T L, MOHAN H, MANOJ V M, et al. Reaction of sulphate radical anion(SO4-) with hydroxy-and methyl-substituted pyrimidines: A pulse radiolysis study[J]. Research on Chemical Intermediates,2003,29(4):379−391. doi: 10.1163/156856703765694327
|
[26] |
邓永秀. UV/Chlorine降解水中吡虫啉和噻虫啉的研究[D]. 长沙: 湖南大学, 2018.
DENG Y X. Degradation of IMD and THIA in water via UV/Chlorine process[D]. Changsha: Hunan University, 2018.
|
[27] |
方倩囡. 淡水水体中农药残留的化学氧化降解及机理研究[D]. 北京: 中国农业科学院, 2019.
FANG Q N. Degradation and mechanism of chemical oxidation of pesticide residues in freshwater bodies[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
|
[28] |
LI S P, MA X L, JIANG Y Y, et al. Acetamiprid removal in wastewater by the low-temperature plasma using dielectric barrier discharge[J]. Ecotoxicology and Environmental Safety,2014,106:146−153. doi: 10.1016/j.ecoenv.2014.04.034
|
[29] |
赵青花. 臭氧化降解水中噻虫嗪和啶虫脒的研究[D]. 泰安: 山东农业大学, 2016.
ZHAO Q H. Degradation of thiamethoxam and acetamiprid in aqueous solution by ozonation[D]. Taian: Shandong Agricultural University, 2016.
|
[1] | PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230 |
[2] | KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273 |
[3] | YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073 |
[4] | Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120 |
[5] | LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054 |
[6] | LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148 |
[7] | ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205 |
[8] | Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197 |
[9] | Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339 |
[10] | GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072 |
1. |
陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
![]() | |
2. |
雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
![]() | |
3. |
张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
![]() | |
4. |
杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
![]() | |
5. |
何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
![]() | |
6. |
张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
![]() | |
7. |
陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 .
![]() | |
8. |
余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
![]() | |
9. |
张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
![]() | |
10. |
张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
![]() | |
11. |
付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
![]() | |
12. |
岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
![]() | |
13. |
Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .
![]() |