KE Liangjian, LU Xiuyuan, WANG Xingquan, et al. Degradation of Imidacloprid,Acetamiprid and Triazophos in Aqueous Solution by Dielectric Barrier Discharge Low-Temperature Plasma[J]. Science and Technology of Food Industry, 2022, 43(7): 262−272. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060277.
Citation: KE Liangjian, LU Xiuyuan, WANG Xingquan, et al. Degradation of Imidacloprid,Acetamiprid and Triazophos in Aqueous Solution by Dielectric Barrier Discharge Low-Temperature Plasma[J]. Science and Technology of Food Industry, 2022, 43(7): 262−272. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060277.

Degradation of Imidacloprid,Acetamiprid and Triazophos in Aqueous Solution by Dielectric Barrier Discharge Low-Temperature Plasma

More Information
  • Received Date: July 01, 2021
  • Available Online: February 10, 2022
  • In order to explore the degradation of imidacloprid, acetamiprid and triazophos by dielectric barrier discharge low-temperature plasma, the aqueous solution was established to study the effects of the discharge voltage, discharge time, initial pesticide concentration and pH of solution on degradation. The degradation kinetics model was also analyzed and the degradation path was proposed based on the degradation products identification. The results showed that the low-temperature plasma technology could effectively degrade the three pesticide residues in the aqueous solution and triazophos was much more labile to low-temperature plasma treatment than imidacloprid and acetamiprid. Under the conditions of this study, the increase of discharge voltage and discharge time, and the decrease of initial pesticides concentration benefitted the increase of degradation rate. Alkaline conditions were conducive to the degradation of imidacloprid and acetamiprid, and acidic conditions benefitted the degradation of triazophos. The maximum degradations rates were 62.5% for imidacloprid (pH9.0), 42.4% for acetamiprid (pH9.0) and 94.5% for triazophos (pH3.0) after the treatment at 13.6 kV for 5 min at the initial concentration of 1.9 mg/L. The degradation kinetics of all pesticides were fitted to the first-order kinetics model well (R2≥0.90). Seven and five degradation products of imidacloprid and acetamiprid were identified respectively. The formation of imidacloprid and acetamiprid degradation products mainly experienced the breaking of C-H, C-N bonds and the oxidation and substitution of hydroxyl radicals.
  • [1]
    YANG F W, LI Y X, REN F Z, et al. Toxicity, residue, degradation and detection methods of the insecticide triazophos[J]. Environmental Chemistry Letters,2019,17(4):1769−1785. doi: 10.1007/s10311-019-00910-z
    [2]
    王圣印, 刘永杰, 周仙红, 等. 新烟碱类杀虫剂吡虫啉的研究进展[J]. 江西农业学报,2012,24(3):76−79. [WANG S Y, LIU Y J, ZHOU X H, et al. Research progress in new neonicotinoid insecticide imidacloprid[J]. Acta Agriculturae Jiangxi,2012,24(3):76−79. doi: 10.3969/j.issn.1001-8581.2012.03.024
    [3]
    周育, 庾琴, 侯慧锋, 等. 新型烟碱类杀虫剂啶虫脒研究进展[J]. 植物保护,2006,32(3):16−20. [ZHOU Y, YU Q, HOU H F, et al. Progress in chloronicotinyl insecticide acetamiprid[J]. Plant Protection,2006,32(3):16−20. doi: 10.3969/j.issn.0529-1542.2006.03.005
    [4]
    刘长令. 世界农药大全[M]. 北京: 化学工业出版社, 2012: 244−256.

    LIU C L. World pesticide encyclopedia[M]. Beijing: Chemical Industry Press, 2012: 244−256.
    [5]
    KLEIN M. Scientific opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid[J]. European Food Safety Authority Journal,2013,12(11):3471.
    [6]
    ANADON A, ARES I, MARTINEZ M, et al. Neurotoxicity of neonicotinoids[J]. Advances in Neurotoxicology,2020,4:167−207.
    [7]
    STIVAKTAKIS P D, KAVVALAKIS M P, TZATZARAKIS M N, et al. Long-term exposure of rabbits to imidaclorpid as quantified in blood induces genotoxic effect[J]. Chemosphere,2016,149:108−113. doi: 10.1016/j.chemosphere.2016.01.040
    [8]
    王未, 黄从建, 张满成, 等. 我国区域性水体农药污染现状研究分析[J]. 环境保护科学,2013,39(5):5−9. [WANG W, HUANG C J, ZHANG M C, et al. Study on status of regional water pollution by pesticides in China[J]. Environmental Protection Science,2013,39(5):5−9. doi: 10.3969/j.issn.1004-6216.2013.05.002
    [9]
    张俊, 王定勇. 蔬菜的农药污染现状及农药残留危害[J]. 农村经济与科技,2004,15(3):16−17. [ZHANG J, WANG D Y. Present situation of pesticide pollution in vegetables and harm of pesticide residues[J]. Rural Economy and Science-Technology,2004,15(3):16−17. doi: 10.3969/j.issn.1007-7103.2004.03.008
    [10]
    SZPYRKA E, SŁOWIK-BOROWIEC M, MATYASZEK A, et al. Pesticide residues in raw agricultural products from the south-eastern region of Poland and the acute risk assessment[J]. Roczniki Panstwowego Zakadu Higieny,2016,67(3):237−245.
    [11]
    GERRITY D, STANFORD B D, TRENHOLM R A, et al. An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation[J]. Water Research,2010,44(2):493−504. doi: 10.1016/j.watres.2009.09.029
    [12]
    孟月东, 钟少锋, 熊新阳. 低温等离子体技术应用研究进展[J]. 物理,2006,35(2):140−146. [MENG Y D, ZHONG S F, XIONG X Y. Advances in applied low-temperature plasma technology[J]. Physics,2006,35(2):140−146. doi: 10.3321/j.issn:0379-4148.2006.02.009
    [13]
    丛来欣, 黄明明, 章建浩, 等. 高压电场低温等离子体对马拉硫磷的降解效能及降解途径[J]. 食品工业科技,2020,41(21):37−42+47. [CONG L X, HUANG M M, ZHANG J H, et al. The degradation efficiency and pathway of malathion treated by high voltage electric field cold plasma[J]. Science and Technology of Food Industry,2020,41(21):37−42+47.
    [14]
    陈桂芸, 赵爽, 何适, 等. 低温等离子体改性玉米醇溶蛋白基膜表面亲水性的研究[J]. 食品研究与开发, 2018, 39(20): 8−12.

    CHEN G Y, ZHAO S, HE S, et al. Effect of cold plasma on the structure and surface hydrophilicity of zein-based films[J]. Food Research and Development, 2018, 39(20): 8−12.
    [15]
    林向阳, 李雁晖, 黄彬红, 等. 介质阻挡放电等离子体(DBDP)对橙汁杀菌及钝化酶的影响[J]. 中国食品学报,2010,10(6):14−21. [LIN X Y, LI Y H, HUANG B H, et al. Effect of dielectric barrier discharge plasma(DBDP) on the sterilization and enzyme inactivation of orange juice[J]. Journal of Chinese Institute of Food Science and Technology,2010,10(6):14−21. doi: 10.3969/j.issn.1009-7848.2010.06.003
    [16]
    刘品, 陈静. 低温等离子体对南美白对虾防黑变及品质的研究[J]. 食品工业,2018,39(11):184−187. [LIU P, CHEN J. Study on prevention of blackening of penaeus vannamei by low temperature plasma[J]. The Food Industry,2018,39(11):184−187.
    [17]
    李斌, 殷桃, 张媛媛, 等. 紫外光照射降解水中吡虫啉和啶虫脒的研究[J]. 现代食品科技,2014,30(5):145−149. [LI B, YIN T, ZHANG Y Y, et al. Degradation of imidacloprid and acetamiprid in aqueous solution by ultraviolet irradiation[J]. Modern Food Science and Technology,2014,30(5):145−149.
    [18]
    李星, 王兴权, 杨洪宇, 等. 介质阻挡放电等离子体降解制药企业废水污染物的研究[J]. 电工电能新技术,2020,39(1):76−81. [LI X, WANG X Q, YANG H Y, et al. Research of degradation on wastewater pollutants discharged from pharmaceutical company by dielectric barrier discharge plasma[J]. Advanced Technology of Electrical Engineering and Energy,2020,39(1):76−81.
    [19]
    FREISSINET C, VAUCLIN M, ERLICH M. Comparison of first-order analysis and fuzzy set approach for the evaluation of imprecision in a pesticide groundwater pollution screening model[J]. Journal of Contaminant Hydrology,1999,37(1/2):21−43.
    [20]
    程虎, 叶齐政, 覃世勋, 等. 放电等离子体水处理中有机物的降解速率[J]. 高电压技术,2007,33(2):150−153,185. [CHENG H, YE Q Z, QIN S X, et al. Influential factors on degradation rate of organic contamination in water treatment by discharge plasma[J]. High Voltage Engineering,2007,33(2):150−153,185. doi: 10.3969/j.issn.1003-6520.2007.02.036
    [21]
    黄芳敏, 王红林, 严宗诚, 等. 介质阻挡放电等离子体对亚甲基蓝的降解[J]. 环境科学与技术,2010,33(2):35−38. [HUANG F M, WANG H L, YAN Z C, et al. Degradation of methylene blue by dielectric barrier discharge plasma[J]. Environmental Science and Technology,2010,33(2):35−38. doi: 10.3969/j.issn.1003-6504.2010.02.009
    [22]
    宋玲. 气相介质阻挡放电活性粒子喷射降解水中有机污染物的研究[D]. 大连: 大连理工大学, 2008.

    SONG L. Degradation of organic compounds in wastewater by active species sprayed in a gas phase dieleetric barrier discharge system[D]. Dalian: Dalian University of Technology, 2008.
    [23]
    司唤. 啶虫脒水解机理的理论研究[D]. 重庆: 重庆师范大学, 2016.

    SI H. Theoretical studies on the hydrolysis mechanism of acetamiprid[D]. Chongqing: Chongqing Normal University, 2016.
    [24]
    郑巍, 宣日成, 刘维屏. 新农药吡虫啉水解动力学和机理研究[J]. 环境科学学报,1999(1):103−106. [ZHENG W, XUAN R C, LIU W P. Kinetics and mechanism of pesticide imidacloprid hydrolysis[J]. Acta Scientiae Circumstantiae,1999(1):103−106.
    [25]
    LUKE T L, MOHAN H, MANOJ V M, et al. Reaction of sulphate radical anion(SO4-) with hydroxy-and methyl-substituted pyrimidines: A pulse radiolysis study[J]. Research on Chemical Intermediates,2003,29(4):379−391. doi: 10.1163/156856703765694327
    [26]
    邓永秀. UV/Chlorine降解水中吡虫啉和噻虫啉的研究[D]. 长沙: 湖南大学, 2018.

    DENG Y X. Degradation of IMD and THIA in water via UV/Chlorine process[D]. Changsha: Hunan University, 2018.
    [27]
    方倩囡. 淡水水体中农药残留的化学氧化降解及机理研究[D]. 北京: 中国农业科学院, 2019.

    FANG Q N. Degradation and mechanism of chemical oxidation of pesticide residues in freshwater bodies[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
    [28]
    LI S P, MA X L, JIANG Y Y, et al. Acetamiprid removal in wastewater by the low-temperature plasma using dielectric barrier discharge[J]. Ecotoxicology and Environmental Safety,2014,106:146−153. doi: 10.1016/j.ecoenv.2014.04.034
    [29]
    赵青花. 臭氧化降解水中噻虫嗪和啶虫脒的研究[D]. 泰安: 山东农业大学, 2016.

    ZHAO Q H. Degradation of thiamethoxam and acetamiprid in aqueous solution by ozonation[D]. Taian: Shandong Agricultural University, 2016.
  • Related Articles

    [1]PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230
    [2]KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273
    [3]YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073
    [4]Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120
    [5]LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054
    [6]LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148
    [7]ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205
    [8]Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197
    [9]Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339
    [10]GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072
  • Cited by

    Periodical cited type(13)

    1. 陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
    2. 雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
    3. 张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
    4. 杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
    7. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    8. 余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
    9. 张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
    10. 张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
    11. 付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
    12. 岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
    13. Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (228) PDF downloads (26) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return