Citation: | FEI Zhongnan, WAN Minxi, FAN Fei, et al. Establishment and Scale-up of Spray Drying Technology for Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2022, 43(5): 209−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060274. |
[1] |
RAZA S H A, NAQVI S R Z, ABDELNOUR S A, et al. Beneficial effects and health benefits of astaxanthin molecules on animal production: A review[J]. Research in Veterinary Science,2021,138:69−78. doi: 10.1016/j.rvsc.2021.05.023
|
[2] |
GOFF M L, FERREC E L, MAYER C, et al. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention[J]. Biochimie,2019,167:106−118. doi: 10.1016/j.biochi.2019.09.012
|
[3] |
FARAONE I, SINISGALLI C, OSTUNI A, et al. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review[J]. Pharmacological Research,2020,155:104689. doi: 10.1016/j.phrs.2020.104689
|
[4] |
RAMMUNI M N, ARIYADASA T U, NIMARSHANA P H V, et al. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina[J]. Food Chemistry,2019,277:128−134. doi: 10.1016/j.foodchem.2018.10.066
|
[5] |
KHOO K S, LEE S Y, OOI C W, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis[J]. Bioresource Technology,2019,288:121606. doi: 10.1016/j.biortech.2019.121606
|
[6] |
LI X, WANG X, DUAN C, et al. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis[J]. Biotechnology Advances,2020,43:107602. doi: 10.1016/j.biotechadv.2020.107602
|
[7] |
BELLINGHAUSEN R. Spray drying from yesterday to tomorrow: An industrial perspective[J]. Drying Technology,2019,37(5):612−622. doi: 10.1080/07373937.2018.1517778
|
[8] |
MAROOF K, LEE R, SIOW L F, et al. Microencapsulation of propolis by spray drying: A review[J]. Drying Technology,2020:1−20.
|
[9] |
FURUTA T, NEOH T L. Microencapsulation of food bioactive components by spray drying: A review[J]. Drying Technology,2021:1−32.
|
[10] |
O'SULLIVAN J J, NORWOOD E A, O'MAHONY J A, et al. Atomisation technologies used in spray drying in the dairy industry: A review[J]. Journal of Food Engineering,2019,243:57−69. doi: 10.1016/j.jfoodeng.2018.08.027
|
[11] |
DANTAS D, PASQUALI M A, CAVALCANTI-MATA M, et al. Influence of spray drying conditions on the properties of avocado powder drink[J]. Food Chemistry,2018,266(15):284−291.
|
[12] |
SILVA J, FREIXO R, GIBBS P, et al. Spray-drying for the production of dried cultures[J]. International Journal of Dairy Technology,2011,64(3):321−335. doi: 10.1111/j.1471-0307.2011.00677.x
|
[13] |
RAJKUMAR G, RAJAN M, ARAUJO H C, et al. Comparative evaluation of volatile profile of tomato subjected to hot air, freeze, and spray drying[J]. Drying Technology,2021,39(3):383−391. doi: 10.1080/07373937.2020.1842441
|
[14] |
BENNAMOUN L, AFZAL M T, LÉONARD A. Drying of alga as a source of bioenergy feedstock and food supplement–A review[J]. Renewable and Sustainable Energy Reviews,2015,50:1203−1212. doi: 10.1016/j.rser.2015.04.196
|
[15] |
BARBOSA J, BORGES S, AMORIM M, et al. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder[J]. Journal of Functional Foods,2015,17:340−351. doi: 10.1016/j.jff.2015.06.001
|
[16] |
AHMED F, LI Y, FANNING K, et al. Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis[J]. Food Research International,2015,74:231−236. doi: 10.1016/j.foodres.2015.05.021
|
[17] |
MURALI S, KAR A, MOHAPATRA D, et al. Encapsulation of black carrot juice using spray and freeze drying[J]. Food Science and Technology International,2015,21(8):604−612. doi: 10.1177/1082013214557843
|
[18] |
KHA T C, NGUYEN M H, ROACH P D. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder[J]. Journal of Food Engineering,2010,98(3):385−392. doi: 10.1016/j.jfoodeng.2010.01.016
|
[19] |
袁超, 金征宇. 虾青素的热稳定性及分解动力学[J]. 天然产物研究与开发,2010(6):1085−1087. [YUAN Cao, JIN Zhengyu. Thermal stability and decomposition kinetics of astaxanthin[J]. Natural Product Research and Development,2010(6):1085−1087. doi: 10.3969/j.issn.1001-6880.2010.06.042
|
[20] |
RAPOSO M F J, MORAIS A M M B, MORAIS R M S C. Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass[J]. World Journal of Microbiology & Biotechnology,2012,28(3):1253−1257.
|
[21] |
GIL M, VICENTE J, GASPAR F. Scale-up methodology for pharmaceutical spray drying[J]. Chimica Oggi,2010,28(4):18−22.
|
[22] |
POOZESH S, BILGILI E. Scale-up of pharmaceutical spray drying using scale-up rules: A review[J]. International Journal of Pharmaceutics,2019,562:271−292. doi: 10.1016/j.ijpharm.2019.03.047
|
[23] |
ZBICINSKI I. Modeling and scaling up of industrial spray dryers: A review[J]. Journal of Chemical Engineering of Japan,2017,50(10):757−767. doi: 10.1252/jcej.16we350
|
[24] |
BOUSSIBA S, VONSHAK A. Astaxanthin accumulation in the green alga Haematococcus pluvialis[J]. Plant and Cell Physiology,1991,32(7):1077−1082. doi: 10.1093/oxfordjournals.pcp.a078171
|
[25] |
ZHANG Z, WANG B, HU Q, et al. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis[J]. Biotechnology and Bioengineering,2016,113(10):2088−2099. doi: 10.1002/bit.25976
|
[26] |
LIU Y, CHEN F, GUO H. Optimization of bayberry juice spray drying process using response surface methodology[J]. Food Science and Biotechnology,2017,26(5):1235−1244. doi: 10.1007/s10068-017-0169-0
|
[27] |
阎红, 王维, 王喜忠. 喷雾干燥用雾化器尺寸的估算[J]. 化工设备与防腐蚀,2001(2):14−20. [YAN Hong, WANG Wei, WANG Xizhong. Estimation of atomizer size for spray drying[J]. Chemical Equipment & Anticorrosion,2001(2):14−20.
|
[28] |
VICENTE J, PINTO J, MENEZES J, et al. Fundamental analysis of particle formation in spray drying[J]. Powder Technology,2013,247:1−7. doi: 10.1016/j.powtec.2013.06.038
|
[29] |
LISBOA H M, DUARTE M E, CAVALCANTI-MATA M E. Modeling of food drying processes in industrial spray dryers[J]. Food and Bioproducts Processing,2018,107:49−60. doi: 10.1016/j.fbp.2017.09.006
|
[30] |
TSAPIS N, BENNETT D, JACKSON B, et al. Trojan particles: Large porous carriers of nanoparticles for drug delivery[J]. Proceedings of the National Academy of Sciences,2002,99(19):12001−12005. doi: 10.1073/pnas.182233999
|
[31] |
TONON R V, BRABET C, HUBINGER M D. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying[J]. Journal of Food Engineering,2008,88(3):411−418. doi: 10.1016/j.jfoodeng.2008.02.029
|
[32] |
MAURY M, MURPHY K, KUMAR S, et al. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer[J]. European Journal of Pharmaceutics and Biopharmaceutics,2005,59(3):565−573. doi: 10.1016/j.ejpb.2004.10.002
|
[33] |
DE OLIVEIRA A H, MATA M E R M C, FORTES M, et al. Influence of spray drying conditions on the properties of whole goat milk[J]. Drying Technology,2021,39(6):726−737. doi: 10.1080/07373937.2020.1714647
|
[34] |
谢明, 王伟良, 黄建科, 等. 基于响应面分析法的小球藻藻粉喷雾干燥工艺优化[J]. 食品工业科技,2012(6):263−266. [XIE Ming, WANG Weiliang, HUANG Jianke, et al. Optimization of spray drying process of Chlorella powder with response surface method[J]. Science and Technology of Food Industry,2012(6):263−266.
|
[1] | GAO Ziqi, LIU Xiuwei, LI Zelin, FAN Fangyu, WANG Hanmo, TIAN Hao, NIU Zhirui. Dynamic Visual Analysis Literature in Coffee Flavor Research[J]. Science and Technology of Food Industry, 2024, 45(22): 225-235. DOI: 10.13386/j.issn1002-0306.2023110286 |
[2] | LI Tingyang, HOU Yue, GOU Wenfeng, SHANG Haihua, XU Feifei, LI Yiliang, HOU Wenbin, ZHOU Fujun. Visual Analysis of Amino Acid Radiation Protection Research Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(18): 366-375. DOI: 10.13386/j.issn1002-0306.2023090282 |
[3] | ZHANG Xuwen, LIU Sui, ZHAO Jinqi, YANG Ya, GE Binggang, WANG Kunbo, FU Donghe. Visual Analysis of Dark Tea Research Status Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(8): 397-406. DOI: 10.13386/j.issn1002-0306.2023050356 |
[4] | LI Jianing, ZHANG Yulin, LÜ Yi, WANG Jiaqi, MA Tingting, FANG Yulin, SUN Xiangyu. Research Progress Analysis on Copper in Wine Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(16): 470-479. DOI: 10.13386/j.issn1002-0306.2022120101 |
[5] | DING Yan, SUN Yuanming, LI Dongsheng, LI Tongxi, ZHANG Yongcheng, LIU Yang, LAN Haipeng. Visualized Analysis of Research Progress and Trends in Fruit Nondestructive Testing Based on CiteSpace[J]. Science and Technology of Food Industry, 2023, 44(16): 444-453. DOI: 10.13386/j.issn1002-0306.2022100233 |
[6] | ZHAO Qiaozhen, ZHANG Mengmeng, MIAO Kunchen, LI Xiaojie, REN Guanghua, LÜ Xiaofeng, XU Xinyu, MENG Wu. Research Status and Visualization Analysis of Microorganism in Baijiu Brewing Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(15): 492-500. DOI: 10.13386/j.issn1002-0306.2022120042 |
[7] | MENG Jin-ming, FAN Ai-ping, HE Chuan-qi, ZENG Li-ping. Dynamic Changes of Physicochemical and Aroma Components in the Fermentation Process of Mango-carrot Compound Fruit Wine[J]. Science and Technology of Food Industry, 2020, 41(12): 7-13. DOI: 10.13386/j.issn1002-0306.2020.12.002 |
[8] | SONG Meng-di, ZENG Jie, JIA Tian, ZHANG Rui-yao, MENG Ke-xin, JIANG Ji-kai, GAO Hai-yan, SU Tong-chao, SUN Jun-liang, LI Guang-lei. Processing Technology and Antioxidant Activities of Deep-fried Instant Carrot Noodles[J]. Science and Technology of Food Industry, 2019, 40(10): 227-231,237. DOI: 10.13386/j.issn1002-0306.2019.10.037 |
[9] | LIU Ying, JIAO Meng-yue, WANG Li-xia, GAO Han, TIAN Yi-ling. Optimization of lactic acid bacteria fermentation carrot protoplasmic technology using the response surface method and the analysis of main volatile components[J]. Science and Technology of Food Industry, 2017, (15): 85-92. DOI: 10.13386/j.issn1002-0306.2017.15.017 |
[10] | SUN Ya-xin, KANG Xu-lei, LIANG Dong, CHEN Fang, HU Xiao-song. Study on effect and mechanism of high pressure processing on hardness of fresh-cut carrot[J]. Science and Technology of Food Industry, 2017, (11): 200-204. DOI: 10.13386/j.issn1002-0306.2017.11.029 |
1. |
夏羽菡,丁欢,孟甘露,赵荣,刘文颖,杜颖鑫. 小麦肽对小鼠成肌细胞C2C12凋亡的影响及机制研究. 中国食物与营养. 2024(10): 54-61 .
![]() | |
2. |
李尽哲,张弛,盛思佳,柳凤凤,祝浩杰,黄雅琴. 花脸香蘑山药菌质饮料的配方优化及其抗氧化活性. 食品工业科技. 2023(05): 195-203 .
![]() | |
3. |
杨亚萍,吕亚辉,刘飞祥,彭新. 灵芝菌丝体硒多糖结构表征、抗氧化活性及对小鼠运动疲劳的影响. 中国食品添加剂. 2023(06): 109-118 .
![]() | |
4. |
符家庆,毛志晨. 蒲菜总黄酮的分离纯化及其对小鼠运动耐力的影响. 中国食品添加剂. 2023(06): 138-145 .
![]() | |
5. |
侯志远,孟飞燕. 响应面法优化白灵菇菌丝体多糖运动饮料配方及其抗疲劳研究. 中国食品添加剂. 2023(07): 174-180 .
![]() | |
6. |
张瑞,刘敬科,常世敏,刘俊利. 谷物饮料的研究进展. 食品科技. 2023(08): 152-158 .
![]() | |
7. |
吕一鸣,田潇凌,王晓曦,马森. 小麦蛋白质研究与开发现状. 粮食加工. 2022(03): 8-13 .
![]() | |
8. |
赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 .
![]() | |
9. |
樊一婷. 缓解恢复运动性疲劳的天然物质化学提取工艺及性能分析. 粘接. 2022(10): 118-121 .
![]() | |
10. |
董佳萍,杨琪,谢琳琳,王鹤霖,刘殊凡,迟晓星. 金雀异黄素缓解免疫抑制大鼠运动性疲劳的作用研究. 中国粮油学报. 2022(09): 111-116 .
![]() |