FEI Zhongnan, WAN Minxi, FAN Fei, et al. Establishment and Scale-up of Spray Drying Technology for Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2022, 43(5): 209−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060274.
Citation: FEI Zhongnan, WAN Minxi, FAN Fei, et al. Establishment and Scale-up of Spray Drying Technology for Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2022, 43(5): 209−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060274.

Establishment and Scale-up of Spray Drying Technology for Haematococcus pluvialis

More Information
  • Received Date: July 01, 2021
  • Available Online: December 27, 2021
  • In order to establish a drying method for Haematococcus pluvialis with great application value, the spray drying conditions for harvested H. pluvialis in the pilot-scale (evaporation capacity of 25 kg·h−1) and production scale (evaporation capacity of 250 kg·h−1) were optimized and amplified. The results showed that inlet temperatures ranging from 130 to 180 ℃ had no significant effect on the physicochemical indexes in the pilot-scale. When the outlet air temperature in the pilot scale increased from 50 to 75 ℃, the moisture content increased, but no obvious variations in astaxanthin content and protein content were found. The total solid mass fraction could significantly affect the energy consumption, production efficiency and yield of spray drying, and the optimal total solid mass fraction for spray drying was 14.60%. The key factors affecting the quality of algae powder were the drying time for droplets and the peclet number for heat, both of which could be adjusted by the outlet temperature. The scale-up of the spray drying process of H. pluvialis powder was finally achieved by optimizing the outlet air temperature, with the production efficiency of 37.04 kg·h−1 and the yield of 98.57%. The process had commercial application value, and realized the scale production of H. pluvialis powder.
  • [1]
    RAZA S H A, NAQVI S R Z, ABDELNOUR S A, et al. Beneficial effects and health benefits of astaxanthin molecules on animal production: A review[J]. Research in Veterinary Science,2021,138:69−78. doi: 10.1016/j.rvsc.2021.05.023
    [2]
    GOFF M L, FERREC E L, MAYER C, et al. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention[J]. Biochimie,2019,167:106−118. doi: 10.1016/j.biochi.2019.09.012
    [3]
    FARAONE I, SINISGALLI C, OSTUNI A, et al. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review[J]. Pharmacological Research,2020,155:104689. doi: 10.1016/j.phrs.2020.104689
    [4]
    RAMMUNI M N, ARIYADASA T U, NIMARSHANA P H V, et al. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina[J]. Food Chemistry,2019,277:128−134. doi: 10.1016/j.foodchem.2018.10.066
    [5]
    KHOO K S, LEE S Y, OOI C W, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis[J]. Bioresource Technology,2019,288:121606. doi: 10.1016/j.biortech.2019.121606
    [6]
    LI X, WANG X, DUAN C, et al. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis[J]. Biotechnology Advances,2020,43:107602. doi: 10.1016/j.biotechadv.2020.107602
    [7]
    BELLINGHAUSEN R. Spray drying from yesterday to tomorrow: An industrial perspective[J]. Drying Technology,2019,37(5):612−622. doi: 10.1080/07373937.2018.1517778
    [8]
    MAROOF K, LEE R, SIOW L F, et al. Microencapsulation of propolis by spray drying: A review[J]. Drying Technology,2020:1−20.
    [9]
    FURUTA T, NEOH T L. Microencapsulation of food bioactive components by spray drying: A review[J]. Drying Technology,2021:1−32.
    [10]
    O'SULLIVAN J J, NORWOOD E A, O'MAHONY J A, et al. Atomisation technologies used in spray drying in the dairy industry: A review[J]. Journal of Food Engineering,2019,243:57−69. doi: 10.1016/j.jfoodeng.2018.08.027
    [11]
    DANTAS D, PASQUALI M A, CAVALCANTI-MATA M, et al. Influence of spray drying conditions on the properties of avocado powder drink[J]. Food Chemistry,2018,266(15):284−291.
    [12]
    SILVA J, FREIXO R, GIBBS P, et al. Spray-drying for the production of dried cultures[J]. International Journal of Dairy Technology,2011,64(3):321−335. doi: 10.1111/j.1471-0307.2011.00677.x
    [13]
    RAJKUMAR G, RAJAN M, ARAUJO H C, et al. Comparative evaluation of volatile profile of tomato subjected to hot air, freeze, and spray drying[J]. Drying Technology,2021,39(3):383−391. doi: 10.1080/07373937.2020.1842441
    [14]
    BENNAMOUN L, AFZAL M T, LÉONARD A. Drying of alga as a source of bioenergy feedstock and food supplement–A review[J]. Renewable and Sustainable Energy Reviews,2015,50:1203−1212. doi: 10.1016/j.rser.2015.04.196
    [15]
    BARBOSA J, BORGES S, AMORIM M, et al. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder[J]. Journal of Functional Foods,2015,17:340−351. doi: 10.1016/j.jff.2015.06.001
    [16]
    AHMED F, LI Y, FANNING K, et al. Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis[J]. Food Research International,2015,74:231−236. doi: 10.1016/j.foodres.2015.05.021
    [17]
    MURALI S, KAR A, MOHAPATRA D, et al. Encapsulation of black carrot juice using spray and freeze drying[J]. Food Science and Technology International,2015,21(8):604−612. doi: 10.1177/1082013214557843
    [18]
    KHA T C, NGUYEN M H, ROACH P D. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder[J]. Journal of Food Engineering,2010,98(3):385−392. doi: 10.1016/j.jfoodeng.2010.01.016
    [19]
    袁超, 金征宇. 虾青素的热稳定性及分解动力学[J]. 天然产物研究与开发,2010(6):1085−1087. [YUAN Cao, JIN Zhengyu. Thermal stability and decomposition kinetics of astaxanthin[J]. Natural Product Research and Development,2010(6):1085−1087. doi: 10.3969/j.issn.1001-6880.2010.06.042
    [20]
    RAPOSO M F J, MORAIS A M M B, MORAIS R M S C. Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass[J]. World Journal of Microbiology & Biotechnology,2012,28(3):1253−1257.
    [21]
    GIL M, VICENTE J, GASPAR F. Scale-up methodology for pharmaceutical spray drying[J]. Chimica Oggi,2010,28(4):18−22.
    [22]
    POOZESH S, BILGILI E. Scale-up of pharmaceutical spray drying using scale-up rules: A review[J]. International Journal of Pharmaceutics,2019,562:271−292. doi: 10.1016/j.ijpharm.2019.03.047
    [23]
    ZBICINSKI I. Modeling and scaling up of industrial spray dryers: A review[J]. Journal of Chemical Engineering of Japan,2017,50(10):757−767. doi: 10.1252/jcej.16we350
    [24]
    BOUSSIBA S, VONSHAK A. Astaxanthin accumulation in the green alga Haematococcus pluvialis[J]. Plant and Cell Physiology,1991,32(7):1077−1082. doi: 10.1093/oxfordjournals.pcp.a078171
    [25]
    ZHANG Z, WANG B, HU Q, et al. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis[J]. Biotechnology and Bioengineering,2016,113(10):2088−2099. doi: 10.1002/bit.25976
    [26]
    LIU Y, CHEN F, GUO H. Optimization of bayberry juice spray drying process using response surface methodology[J]. Food Science and Biotechnology,2017,26(5):1235−1244. doi: 10.1007/s10068-017-0169-0
    [27]
    阎红, 王维, 王喜忠. 喷雾干燥用雾化器尺寸的估算[J]. 化工设备与防腐蚀,2001(2):14−20. [YAN Hong, WANG Wei, WANG Xizhong. Estimation of atomizer size for spray drying[J]. Chemical Equipment & Anticorrosion,2001(2):14−20.
    [28]
    VICENTE J, PINTO J, MENEZES J, et al. Fundamental analysis of particle formation in spray drying[J]. Powder Technology,2013,247:1−7. doi: 10.1016/j.powtec.2013.06.038
    [29]
    LISBOA H M, DUARTE M E, CAVALCANTI-MATA M E. Modeling of food drying processes in industrial spray dryers[J]. Food and Bioproducts Processing,2018,107:49−60. doi: 10.1016/j.fbp.2017.09.006
    [30]
    TSAPIS N, BENNETT D, JACKSON B, et al. Trojan particles: Large porous carriers of nanoparticles for drug delivery[J]. Proceedings of the National Academy of Sciences,2002,99(19):12001−12005. doi: 10.1073/pnas.182233999
    [31]
    TONON R V, BRABET C, HUBINGER M D. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying[J]. Journal of Food Engineering,2008,88(3):411−418. doi: 10.1016/j.jfoodeng.2008.02.029
    [32]
    MAURY M, MURPHY K, KUMAR S, et al. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer[J]. European Journal of Pharmaceutics and Biopharmaceutics,2005,59(3):565−573. doi: 10.1016/j.ejpb.2004.10.002
    [33]
    DE OLIVEIRA A H, MATA M E R M C, FORTES M, et al. Influence of spray drying conditions on the properties of whole goat milk[J]. Drying Technology,2021,39(6):726−737. doi: 10.1080/07373937.2020.1714647
    [34]
    谢明, 王伟良, 黄建科, 等. 基于响应面分析法的小球藻藻粉喷雾干燥工艺优化[J]. 食品工业科技,2012(6):263−266. [XIE Ming, WANG Weiliang, HUANG Jianke, et al. Optimization of spray drying process of Chlorella powder with response surface method[J]. Science and Technology of Food Industry,2012(6):263−266.
  • Related Articles

    [1]GAO Ziqi, LIU Xiuwei, LI Zelin, FAN Fangyu, WANG Hanmo, TIAN Hao, NIU Zhirui. Dynamic Visual Analysis Literature in Coffee Flavor Research[J]. Science and Technology of Food Industry, 2024, 45(22): 225-235. DOI: 10.13386/j.issn1002-0306.2023110286
    [2]LI Tingyang, HOU Yue, GOU Wenfeng, SHANG Haihua, XU Feifei, LI Yiliang, HOU Wenbin, ZHOU Fujun. Visual Analysis of Amino Acid Radiation Protection Research Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(18): 366-375. DOI: 10.13386/j.issn1002-0306.2023090282
    [3]ZHANG Xuwen, LIU Sui, ZHAO Jinqi, YANG Ya, GE Binggang, WANG Kunbo, FU Donghe. Visual Analysis of Dark Tea Research Status Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(8): 397-406. DOI: 10.13386/j.issn1002-0306.2023050356
    [4]LI Jianing, ZHANG Yulin, LÜ Yi, WANG Jiaqi, MA Tingting, FANG Yulin, SUN Xiangyu. Research Progress Analysis on Copper in Wine Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(16): 470-479. DOI: 10.13386/j.issn1002-0306.2022120101
    [5]DING Yan, SUN Yuanming, LI Dongsheng, LI Tongxi, ZHANG Yongcheng, LIU Yang, LAN Haipeng. Visualized Analysis of Research Progress and Trends in Fruit Nondestructive Testing Based on CiteSpace[J]. Science and Technology of Food Industry, 2023, 44(16): 444-453. DOI: 10.13386/j.issn1002-0306.2022100233
    [6]ZHAO Qiaozhen, ZHANG Mengmeng, MIAO Kunchen, LI Xiaojie, REN Guanghua, LÜ Xiaofeng, XU Xinyu, MENG Wu. Research Status and Visualization Analysis of Microorganism in Baijiu Brewing Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(15): 492-500. DOI: 10.13386/j.issn1002-0306.2022120042
    [7]MENG Jin-ming, FAN Ai-ping, HE Chuan-qi, ZENG Li-ping. Dynamic Changes of Physicochemical and Aroma Components in the Fermentation Process of Mango-carrot Compound Fruit Wine[J]. Science and Technology of Food Industry, 2020, 41(12): 7-13. DOI: 10.13386/j.issn1002-0306.2020.12.002
    [8]SONG Meng-di, ZENG Jie, JIA Tian, ZHANG Rui-yao, MENG Ke-xin, JIANG Ji-kai, GAO Hai-yan, SU Tong-chao, SUN Jun-liang, LI Guang-lei. Processing Technology and Antioxidant Activities of Deep-fried Instant Carrot Noodles[J]. Science and Technology of Food Industry, 2019, 40(10): 227-231,237. DOI: 10.13386/j.issn1002-0306.2019.10.037
    [9]LIU Ying, JIAO Meng-yue, WANG Li-xia, GAO Han, TIAN Yi-ling. Optimization of lactic acid bacteria fermentation carrot protoplasmic technology using the response surface method and the analysis of main volatile components[J]. Science and Technology of Food Industry, 2017, (15): 85-92. DOI: 10.13386/j.issn1002-0306.2017.15.017
    [10]SUN Ya-xin, KANG Xu-lei, LIANG Dong, CHEN Fang, HU Xiao-song. Study on effect and mechanism of high pressure processing on hardness of fresh-cut carrot[J]. Science and Technology of Food Industry, 2017, (11): 200-204. DOI: 10.13386/j.issn1002-0306.2017.11.029
  • Cited by

    Periodical cited type(10)

    1. 夏羽菡,丁欢,孟甘露,赵荣,刘文颖,杜颖鑫. 小麦肽对小鼠成肌细胞C2C12凋亡的影响及机制研究. 中国食物与营养. 2024(10): 54-61 .
    2. 李尽哲,张弛,盛思佳,柳凤凤,祝浩杰,黄雅琴. 花脸香蘑山药菌质饮料的配方优化及其抗氧化活性. 食品工业科技. 2023(05): 195-203 . 本站查看
    3. 杨亚萍,吕亚辉,刘飞祥,彭新. 灵芝菌丝体硒多糖结构表征、抗氧化活性及对小鼠运动疲劳的影响. 中国食品添加剂. 2023(06): 109-118 .
    4. 符家庆,毛志晨. 蒲菜总黄酮的分离纯化及其对小鼠运动耐力的影响. 中国食品添加剂. 2023(06): 138-145 .
    5. 侯志远,孟飞燕. 响应面法优化白灵菇菌丝体多糖运动饮料配方及其抗疲劳研究. 中国食品添加剂. 2023(07): 174-180 .
    6. 张瑞,刘敬科,常世敏,刘俊利. 谷物饮料的研究进展. 食品科技. 2023(08): 152-158 .
    7. 吕一鸣,田潇凌,王晓曦,马森. 小麦蛋白质研究与开发现状. 粮食加工. 2022(03): 8-13 .
    8. 赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 . 本站查看
    9. 樊一婷. 缓解恢复运动性疲劳的天然物质化学提取工艺及性能分析. 粘接. 2022(10): 118-121 .
    10. 董佳萍,杨琪,谢琳琳,王鹤霖,刘殊凡,迟晓星. 金雀异黄素缓解免疫抑制大鼠运动性疲劳的作用研究. 中国粮油学报. 2022(09): 111-116 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (256) PDF downloads (57) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return