Citation: | PI Ruobing, LI Dapeng, HONG Hui, et al. Research Progress on Sodium Salt Reduction Strategies in Processed Meat Products[J]. Science and Technology of Food Industry, 2022, 43(13): 408−415. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060248. |
[1] |
ZHENG J, HAN Y, GE G, et al. Partial substitution of NaCl with chloride salt mixtures: Impact on oxidative characteristics of meat myofibrillar protein and their rheological properties[J]. Food Hydrocolloids,2019,96:36−42. doi: 10.1016/j.foodhyd.2019.05.003
|
[2] |
JIANG Q, NAKAZAWA N, HU Y, et al. Changes in quality properties and tissue histology of lightly salted tuna meat subjected to multiple freeze-thaw cycles[J]. Food Chemistry,2019,293:178−186. doi: 10.1016/j.foodchem.2019.04.091
|
[3] |
World Health Organization. WHO issues new guidance on dietary salt and potassium[R]. Geneva: WHO, 2013.
|
[4] |
LKA B, JDMA B, LG A, et al. Sodium intake and its reduction by food reformulation in the European Union-A review[J]. NFS Journal,2015,1:9−19. doi: 10.1016/j.nfs.2015.03.001
|
[5] |
TAHERGORABI R, JACZYNSKI J. Physicochemical changes in surimi with salt substitute[J]. Food Chemistry,2012,132(3):1281−1286. doi: 10.1016/j.foodchem.2011.11.104
|
[6] |
COSTA-CORREDOR A, MUNOZ I, ARNAU J, et al. Ion uptakes and diffusivities in pork meat brine-salted with NaCl and K-lactate[J]. LWT-Food Science and Technology,2010,43(8):1226−1233. doi: 10.1016/j.lwt.2010.03.018
|
[7] |
MITCHELL H. Developing food products for consumers with specific dietary needs[M]. Sawston: Woodhead Publishing, 2016: 81−105.
|
[8] |
B, KATHY G, PRETIMA T. Reducing salt in foods[M]. 2th ed. Sawston: Woodhead Publishing, 2019: 185−211.
|
[9] |
PARNIAKOV O, MIKHROVSKA M, TOEPFL S, et al. Agri-food Industry strategies for healthy diets and sustainability[M]. New York: Academic Press, 2020: 155−175.
|
[10] |
INGUGLIA E S, ZHANG Z, TIWARI B K, et al. Salt reduction strategies in processed meat products-A review[J]. Trends in Food Science & Technology,2017,59:70−78.
|
[11] |
ANDREETTA-GORELKINA I V, GREIFF K, RUSTAD T, et al. Reduction of salt in haddock mince: Effect of different salts on the solubility of proteins[J]. Journal of Aquatic Food Product Technology,2015,25(4):518−530.
|
[12] |
EVA B, LAMBERT R J W. Comparing the antimicrobial effectiveness of NaCl and KCl with a view to salt/sodium replacement[J]. International Journal of Food Microbiology,2008,124(1):98−102. doi: 10.1016/j.ijfoodmicro.2008.02.031
|
[13] |
ÇARKCIOĞLU E, ROSENTHAL A J, K CANDOĞAN. Rheological and textural properties of sodium reduced salt soluble myofibrillar protein gels containing sodium tri-polyphosphate[J]. Journal of Texture Studies,2016,47(3):181−187. doi: 10.1111/jtxs.12169
|
[14] |
KIRSTI G, IDA G A, ULF E, et al. Effects of type and concentration of salts on physicochemical properties in fish mince[J]. LWT-Food Science and Technology,2015,64(1):220−226. doi: 10.1016/j.lwt.2015.05.059
|
[15] |
KIRSTI G, REIDAR M J, EKREM M, et al. Gradual reduction in sodium content in cooked ham, with corresponding change in sensorial properties measured by sensory evaluation and a multimodal machine vision system[J]. PLoS ONE,2015,10(9):1−14.
|
[16] |
ALINO M, GRAU R, FUENTES A M, et al. Influence of low-sodium mixtures of salts on the post-salting stage of dry-cured ham process[J]. Journal of Food Engineering,2010,99(2):198−205. doi: 10.1016/j.jfoodeng.2010.02.020
|
[17] |
BARAT J M, PÉREZ-ESTEVE E, ARISTOY M C, et al. Partial replacement of sodium in meat and fish products by using magnesium salts. A review[J]. Plant and Soil,2013,368(1-2):179−188. doi: 10.1007/s11104-012-1461-7
|
[18] |
BARBA F J, PUTNIK P, KOVAČEVIĆ D. Agri-food industry strategies for healthy diets and sustainability[M]. New York: Academic Press, 2020: 155−175.
|
[19] |
ZHANG Z, YANG Y, TANG X, et al. Chemical forces study of heat-induced myofibrillar protein gel as affected by partial substitution of NaCl with KCl, MgCl2 and CaCl2[J]. CYTA-Journal of Food,2016,14(2):1−9.
|
[20] |
GE G, HAN Y, ZHENG J, et al. Physicochemical characteristics and gel-forming properties of myofibrillar protein in an oxidative system affected by partial substitution of NaCl with KCl, MgCl2 or CaCl2[J]. Food Chemistry,2019,309:125614.
|
[21] |
SUN C, ZHOU X, HU Z, et al. Food and salt structure design for salt reducing[J]. Innovative Food Science & Emerging Technologies,2020,67:102570.
|
[22] |
KILCAST D, ANGUS F. Reducing salt in foods[M]. Sawston: Woodhead Publishing, 2007: 201−230.
|
[23] |
CONROY P M, O'SULLIYAN M G, HAMILL R M, et al. Sensory optimisation of salt-reduced corned beef for different consumer segments[J]. Meat Science,2019,154:1−10. doi: 10.1016/j.meatsci.2019.03.015
|
[24] |
FULLADOSA E, SERRA X, GOU P, et al. Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content[J]. Meat Science,2009,82(2):213−218. doi: 10.1016/j.meatsci.2009.01.013
|
[25] |
BARBUT S, MAURER A J, LINDSAY R C. Effects of reduced sodium chloride and added phosphates on physical and sensory properties of Turkey Frankfurters[J]. Journal of Food Science,1988,53(1):62−66. doi: 10.1111/j.1365-2621.1988.tb10178.x
|
[26] |
RUUSUNEN M, SÄRKKÄ-TIRKKONEN M, PUOLANNE E. The effect of salt reduction on taste pleasantness in cooked bologna type sausages[J]. Journal of Sensory Studies,1999,14:263−270. doi: 10.1111/j.1745-459X.1999.tb00116.x
|
[27] |
BUSCH J, YONG F, GOH S M. Sodium reduction: Optimizing product composition and structure towards increasing saltiness perception[J]. Trends in Food Science & Technology,2013,29(1):21−34.
|
[28] |
DJORDJEVIC J, ZATORRE R J, JONES-GOTMAN M. Odor-induced changes in taste perception[J]. Experimental Brain Research,2004,159(3):405−408. doi: 10.1007/s00221-004-2103-y
|
[29] |
ANDREWS D, SALUNKE S, CRAM A, et al. Bitter-blockers as a taste masking strategy: A systematic review towards their utility in pharmaceuticals[J]. European Journal of Pharmaceutics and Biopharmaceutics,2021,158:35−51. doi: 10.1016/j.ejpb.2020.10.017
|
[30] |
付丽, 刘旖旎, 高雪琴, 等. 低钠盐酱牛肉贮藏品质的变化[J]. 食品工业科技,2020,41(7):44−48,54. [FU L, LIU Y N, GAO X Q, et al. Changes of storage quality of sauced beef with low sodium salt[J]. Science and Technology of Food Industry,2020,41(7):44−48,54.
FU L, LIU Y N, GAO X Q, et al. Changes of storage quality of sauced beef with low sodium salt[J]. Science and Technology of Food Industry, 2020, 41(7): 44-48, 54.
|
[31] |
DELGADO-PANDO G, ALLEN P, KERRY J P, et al. Optimising the acceptability of reduced-salt ham with flavourings using a mixture design[J]. Meat Science,2019,156:1−10. doi: 10.1016/j.meatsci.2019.05.010
|
[32] |
COSTA C, LUCERA A, MARINELLI V, et al. Influence of different by-products addition on sensory and physicochemical aspects of Primosale cheese[J]. Journal of Food Science & Technology,2018,55(10):4174−4183.
|
[33] |
JAVIER G L, MARIA L, RAQUEL D P, et al. Antioxidant effect of seasonings derived from wine pomace on lipid oxidation in refrigerated and frozen beef patties[J]. LWT-Food Science and Technology,2017,77:85−91. doi: 10.1016/j.lwt.2016.11.038
|
[34] |
ZHAO J, WANG T, XIE J, et al. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems[J]. Food Chemistry,2019,274:79−88. doi: 10.1016/j.foodchem.2018.08.096
|
[35] |
GOU P, GUERRERO L, GELABERT J, et al. Potassium chloride, potassium lactate and glycine as sodium chloride substitutes in fermented sausages and in dry-cured pork loin[J]. Meat Science,1996,42(1):37−48. doi: 10.1016/0309-1740(95)00017-8
|
[36] |
SCHIFFMAN S S, DACKIS C. Taste of nutrients: Amino acids, vitamins, and fatty acids[J]. Attention Perception & Psychophysics,1975,17(2):140−146.
|
[37] |
SILOW C, AXEL C, ZANNINI E, et al. Current status of salt reduction in bread and bakery products-A review[J]. Journal of Cereal Science,2016,72:135−145. doi: 10.1016/j.jcs.2016.10.010
|
[38] |
WEN R, HU Y, ZHANG L, et al. Effect of NaCl substitutes on lipid and protein oxidation and flavor development of Harbin dry sausage[J]. Meat Science,2019,156:33−43. doi: 10.1016/j.meatsci.2019.05.011
|
[39] |
FELICIO T L, ESMERINO E A, VIDAL V A S, et al. Physico-chemical changes during storage and sensory acceptance of low sodium probiotic Minas cheese added with arginine[J]. Food Chemistry,2016,196:628−637. doi: 10.1016/j.foodchem.2015.09.102
|
[40] |
ZHU C Z, ZHAO J L, TIAN W, et al. Contribution of histidine and lysine to the generation of volatile compounds in Jinhua ham exposed to ripening conditions via Maillard reaction[J]. Journal of Food Science,2018,83(1):46−52. doi: 10.1111/1750-3841.13996
|
[41] |
SLDS A, JML B, JMM A, et al. Application of arginine and histidine to improve the technological and sensory properties of low-fat and low-sodium bologna-type sausages produced with high levels of KCl[J]. Meat Science,2020,159:107939. doi: 10.1016/j.meatsci.2019.107939
|
[42] |
LAURENCE M, FEREIDOON S, PETER V. Encyclopedia of food chemistry[M]. Netherlands: Elsevier, 2019: 235−239.
|
[43] |
PANDEY A, NEGI S, SOCCOL C R. Current developments in biotechnology and bioengineeringse[M]. Netherlands: Elsevier, 2017: 557−575.
|
[44] |
WANG W, ZHOU X, LIU Y. Characterization and evaluation of umami taste: A review[J]. TrAC Trends in Analytical Chemistry,2020,127:115876. doi: 10.1016/j.trac.2020.115876
|
[45] |
PEDRO D, SALDAA E, LORENZO J M, et al. Low-sodium dry-cured rabbit leg: A novel meat product with healthier properties[J]. Meat Science,2021,173:108372. doi: 10.1016/j.meatsci.2020.108372
|
[46] |
MCGREGOR R. Taste modification in the biotech Era[J]. Food Technology,2004,58(5):24−30.
|
[47] |
MING D, NINOMIYA Y, et al. Blocking taste receptor activation of gustducin inhibits gustatory responses to bitter compounds[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96:9903−9908. doi: 10.1073/pnas.96.17.9903
|
[48] |
WOSKOW M H. Selectivity in flavor modification by 5′nucleotides[J]. Food Technology,1969,23(11):1364.
|
[49] |
BENJAMIN C, PAUL M F, FIDEL T. Encyclopedia of food and health[M]. New York: Academic Press, 2016: 716−723.
|
[50] |
DT A, LLA B, BB A, et al. Plant-derived seasonings as sodium salt replacers in food[J]. Trends in Food Science & Technology,2020,99:194−202.
|
[51] |
古孜力努尔·依马木, 邬利娅·伊明, 依巴代提·托合提, 等. 罗勒提取物对肾性高血压大鼠的影响[J]. 新疆医科大学学报,2009,32(3):259−261,264. [GUZILINUER·Yimamu, WULIYA·Yimin, YIBADEITI·Tuheti, et al. Antihypertensive effects of Ocimum basilicum L. (OBL) on renal hypertensive rats[J]. Journal of Xinjiang Medical University,2009,32(3):259−261,264. doi: 10.3969/j.issn.1009-5551.2009.03.007
GUZILINUER·Yimamu, WULIYA·Yimin, YIBADEITI·Tuheti, et al. Antihypertensive effects of Ocimum basilicum L (OBL) on renal hypertensive rats[J]. Journal of Xinjiang Medical University, 2009, 32(3): 259-261, 264. doi: 10.3969/j.issn.1009-5551.2009.03.007
|
[52] |
ANDERSEN B V, BYRNE D V, BREDIE W, et al. Cayenne pepper in a meal: Effect of oral heat on feelings of appetite, sensory specific desires and well-being[J]. Food Quality & Preference,2017,60:1−8.
|
[53] |
FELLENDORF S, O’SULLIVAN M G, KERRY J P. Effect of using replacers on the physicochemical properties and sensory quality of low salt and low fat white puddings[J]. European Food Research and Technology,2016,242:2105−2118. doi: 10.1007/s00217-016-2707-z
|
[54] |
KIRSTI G, CHARLOTTE J S, BERIT N, et al. Novel utilization of milk-based ingredients in salt reduced fish pudding[J]. LWT-Food Science and Technology,2015,63(1):92−99. doi: 10.1016/j.lwt.2015.03.073
|
[55] |
HOTCHKISS S. Edible seaweeds A rich source of flavor components for sodium replacement[J]. Agro Food Industry Hi-Tech,2012,23(6):30−32.
|
[56] |
SINGLA M, SIT N. Application of ultrasound in combination with other technologies in food processing: A review[J]. Ultrasonics Sonochemistry,2021,73(6):105506.
|
[57] |
FARID C, ZILL-E-HUMA, MUHAMMED K K. Applications of ultrasound in food technology: Processing, preservation and extraction[J]. Ultrasonics Sonochemistry,2010,18(4):813−835.
|
[58] |
CÉSAR O, ANA P, JOSE V, et al. Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations[J]. Journal of Food Engineering,2013,119(1):84−93. doi: 10.1016/j.jfoodeng.2013.05.016
|
[59] |
ZOU Y, KANG D, RUI L, et al. Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef[J]. Ultrasonics Sonochemistry,2018,46:36−45. doi: 10.1016/j.ultsonch.2018.04.005
|
[60] |
OJHA K S, KEENAN D F, BRIGHT A, et al. Ultrasound assisted diffusion of sodium salt replacer and effect on physicochemical properties of pork meat[J]. International Journal of Food Science & Technology,2016,51(1):37−45.
|
[61] |
PANDEY M C, HYGREEVA D. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology-A review[J]. Trends in Food Science & Technology,2016,54:175−185.
|
[62] |
MURCHIE L W, CRUZ-ROMERO M, KERRY J P, et al. High pressure processing of shellfish: A review of microbiological and other quality aspects[J]. Innovative Food Science & Emerging Technologies,2005,6(3):257−270.
|
[63] |
TAMM A, BOLUMAR T, BAJOVIC B, et al. Salt (NaCl) reduction in cooked ham by a combined approach of high pressure treatment and the salt replacer KCl[J]. Innovative Food Science & Emerging Technologies,2016,36:294−302.
|
[64] |
CANDO D, MORENO H M, TOVAR C A, et al. Effect of high pressure and/or temperature over gelation of isolated hake myofibrils[J]. Food and Bioprocess Technology,2014,7(11):3197−3207. doi: 10.1007/s11947-014-1279-9
|
[65] |
WANG J, LI Z, ZHENG B, et al. Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin[J]. LWT-Food Science and Technology,2019,100:381−390. doi: 10.1016/j.lwt.2018.10.053
|
[66] |
WANG Y, ZHOU Y, LI P J, et al. Combined effect of CaCl2 and high pressure processing on the solubility of chicken breast myofibrillar proteins under sodium-reduced conditions[J]. Food Chemistry,2018,269:236−243. doi: 10.1016/j.foodchem.2018.06.107
|
[67] |
PICOUET P A, SALA X, GARCIA-GIL N, et al. High pressure processing of dry-cured ham: Ultrastructural and molecular changes affecting sodium and water dynamics[J]. Innovative Food Science & Emerging Technologies,2012,16:335−340.
|
[68] |
孙晋跃, 孙芝兰, 吴海虹, 等. 非热杀菌技术在低温鸡肉制品致病菌控制中的应用研究进展[J]. 肉类研究,2020,34(8):84−90. [SUN J Y, SUN Z L, WU H H, et al. Advances in application of non-thermal sterilization technologies to control pathogens in low temperature chicken products[J]. Meat Research,2020,34(8):84−90. doi: 10.7506/rlyj1001-8123-20200529-139
SUN J Y, SUN Z L, WU H H, et al. Advances in application of non-thermal sterilization technologies to control pathogens in low temperature chicken products[J]. Meat Research, 2020, 34(8): 84-90. doi: 10.7506/rlyj1001-8123-20200529-139
|
[69] |
BHAT Z F, MORTON J D, MASON S L, et al. Current and future prospects for the use of pulsed electric field in the meat industry[J]. Critical Reviews in Food Science and Nutrition,2019,59(10):1−15.
|
[70] |
BHAT Z F, MORTON J D, MASON S L, et al. The application of pulsed electric field as a sodium reducing strategy for meat products[J]. Food Chemistry,2019,306:125622.
|
[71] |
MA Q, HAMID N, OEY I, et al. Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats[J]. Innovative Food Science & Emerging Technologies,2016,37:359−374.
|
[72] |
ZHANG N, ZHANG H, LI R, et al. Preparation and adsorption properties of citrate-crosslinked chitosan salt microspheres by microwave assisted method[J]. International Journal of Biological Macromolecules,2019,152:1146−1156.
|
[73] |
YI C, TSAI M L, LIU T. Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception[J]. Carbohydrate Polymers,2017,172:246−254. doi: 10.1016/j.carbpol.2017.05.066
|
[74] |
JUAN D R, ERICK S, MELINA L M, et al. Reducing the sodium content without modifying the quality of beef burgers by adding micronized salt[J]. Food Research International,2019,121:288−295. doi: 10.1016/j.foodres.2019.03.044
|
1. |
向芳. 食品减盐策略研究进展. 食品与发酵工业. 2024(06): 350-358 .
![]() | |
2. |
赵亚丽,张香美,卢涵,杨贝,文港. 传统腌腊肉制品质量安全管理研究. 食品与机械. 2023(01): 55-60+156 .
![]() | |
3. |
刘东,夏金龙. 低钠酱鹿肉的配方优化及贮藏期特性研究. 中国调味品. 2023(03): 67-74 .
![]() | |
4. |
李智,牛超杰,邹爱军,常超. 肉制品加工减盐技术及其应用. 武汉轻工大学学报. 2023(04): 31-38 .
![]() | |
5. |
张彦慧,郑红霞,刘楠,高彦祥,毛立科. 胶体结构设计在减盐食品中的应用. 食品科学. 2022(01): 213-222 .
![]() | |
6. |
吕广英,孔君,郑润愽. 一种低钠休闲香肠的加工技术研究. 肉类工业. 2022(05): 16-19 .
![]() | |
7. |
芮李彤,李海静,张婷婷,郭琦,李子豪,夏秀芳. 食盐对肉制品品质形成的作用及减盐技术研究进展. 肉类研究. 2022(07): 61-67 .
![]() | |
8. |
孙悦,李震,王鹏,徐幸莲. 响应面优化减盐鸡肉松热加工工艺及品质测定. 食品工业科技. 2022(20): 263-273 .
![]() | |
9. |
周平萍. 咸味剂咸度分析研究方法进展. 现代食品. 2022(17): 23-26+37 .
![]() |