YU Jincheng, FU Mengfan, CUI Nan, et al. Research Progress on the Mechanism of Plant Polyphenols of Alleviating Exercise Fatigue[J]. Science and Technology of Food Industry, 2022, 43(3): 472−478. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060211.
Citation: YU Jincheng, FU Mengfan, CUI Nan, et al. Research Progress on the Mechanism of Plant Polyphenols of Alleviating Exercise Fatigue[J]. Science and Technology of Food Industry, 2022, 43(3): 472−478. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060211.

Research Progress on the Mechanism of Plant Polyphenols of Alleviating Exercise Fatigue

More Information
  • Received Date: June 23, 2021
  • Available Online: December 03, 2021
  • Fatigue is a phenomenon caused by the disorder of energy coordination in the body, and prolonged exercise fatigue will lead to related diseases. Polyphenols have obvious biological activities, such as anti-oxidation, anti-tumor and so on. At present, polyphenols have been proved to have anti-fatigue effect, which can relieve exercise fatigue by regulating the AMPK signaling pathway to regulate oxidative stress, energy metabolism and inflammation, as well as substrate metabolism. In this paper, the generation and mechanism of exercise fatigue, the source of anti-fatigue polyphenols and the action mechanism of anti-fatigue polyphenols are systematically reviewed in order to provide reference for the research and development of anti-fatigue functional foods with polyphenols.
  • [1]
    SUNDBERG CHRISTOPHER W, FITTS ROBERT H. Bioenergetic basis of skeletal muscle fatigue[J]. Current Opinion in Physiology,2019,10:118−127. doi: 10.1016/j.cophys.2019.05.004
    [2]
    ABOODARDA S J, IANNETTA D, EMAMI N, et al. Effects of pre-induced fatigue vs. concurrent pain on exercise tolerance, neuromuscular performance and corticospinal responses of locomotor muscles[J]. The Journal of Physiology,2020,598(2):285−302. doi: 10.1113/JP278943
    [3]
    QIN Lili, LU Tianfeng, QIN Yao, et al. In vivo effect of resveratrol-loaded solid lipid nanoparticles to relieve physical fatigue for sports nutrition supplements[J]. Molecules (Basel, Switzerland),2020,25(22):E5302. doi: 10.3390/molecules25225302
    [4]
    林安贵, 杨灵灵. 植物提取物槲皮素调节小鼠的能量代谢和氧化应激[J]. 基因组学与应用生物学,2020(1):320−325. [LIN Angui, YANG Lingling. Plant extract Quercetin regulates energy metabolism and oxidative stress in mice[J]. Genomics and Applied Biology,2020(1):320−325.
    [5]
    RUSSELL S, JENKINS D, SMITH M, et al. The application of mental fatigue research to elite team sport performance: New perspectives[J]. Journal of Science and Medicine in Sport,2019,22(6):723−728. doi: 10.1016/j.jsams.2018.12.008
    [6]
    FIORE M, MESSINA M P, PETRELLA C, et al. Antioxidant properties of plant polyphenols in the counteraction of alcohol-abuse induced damage: Impact on the Mediterranean diet[J]. Journal of Functional Foods,2020,71:104012. doi: 10.1016/j.jff.2020.104012
    [7]
    FELICE F, FABIANO A, DE LEO M, et al. Antioxidant effect of Cocoa by-product and cherry polyphenol extracts: A comparative study[J]. Antioxidants,2020,9(132):9020132.
    [8]
    LI Zheng, ZHANG Huixia, LI Yan, et al. Phytotherapy using blueberry leaf polyphenols to alleviate non-alcoholic fatty liver disease through improving mitochondrial function and oxidative defense[J]. Phytomedicine,2020,69:153209. doi: 10.1016/j.phymed.2020.153209
    [9]
    KUNJIAPPAN S, PANNEERSELVAM T, GOVINDARAJ S, et al. Optimization and analysis of ultrasound-assisted extraction of bioactive polyphenols from Garcinia indica using RSM and ANFIS modeling and its anticancer activity[J]. Journal of the Iranian Chemical Society,2020,17(4):789−801. doi: 10.1007/s13738-019-01812-1
    [10]
    DAVID DE PAULO FARIAS, IRAMAIA ANGÉLICA NERI-NUMA, FÁBIO FERNANDES DE ARAÚJO. et al. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims[J]. Food Chemistry,2019,306:125630.
    [11]
    SHARMA D, GONDALIYA P, TIWARI V, et al. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling[J]. Biomedicine & Pharmacotherapy,2019,109:1610−1619.
    [12]
    于新. 功能性食品与疾病预防[M]. 北京: 化学工业出版社. 2015.

    YU Xin. Functional foods and disease prevention[M]. Beijing: Chemical Industry Press. 2015
    [13]
    CARROLL T J, TAYLOR J L, GANDEVIA S C. Recovery of central and peripheral neuromuscular fatigue after exercise[J]. Journal of Applied Physiology,2017,122(05):1068−1076. doi: 10.1152/japplphysiol.00775.2016
    [14]
    PENG Fei, YIN Hongyang, DU Bin, et al. Anti-fatigue activity of purified flavonoids prepared from chestnut (Castanea mollissima) flower[J]. Journal of Functional Foods,2021,79:104365. doi: 10.1016/j.jff.2021.104365
    [15]
    田家俊, 秦阳, 王南平. 中药多糖类化合物抗疲劳作用及其机制研究进展[J]. 生命的化学,2021,41(5):1018−1024. [TIAN Jiajun, QIN Yang, WANG Nanping. Research progress on anti-fatigue effect and mechanism of polysaccharide compounds from traditional Chinese medicine[J]. Chemistry of Life,2021,41(5):1018−1024.
    [16]
    陈蓉, 吴启南. 芡实种皮多酚抗疲劳耐缺氧作用研究[J]. 食品工业科技,2015,36(24):100−103, 108. [CHEN Rong, WU Qinan. Effect of Semen Euryale seed coat polyphenols on anti-fatigue and hypoxia tolerance[J]. Science and Technology of Food Industry,2015,36(24):100−103, 108.
    [17]
    高超, 刘阳, 王宇飞, 等. 大强度运动导致肝脏线粒功能紊乱及姜黄素的拮抗效应[J]. 中国食物与营养,2017,23(5):59−63. [GAO Chao, LIU Yang, WANG Yufei, et al. High-intensity exercise induced hepatic mitochondrial dysfunction in mice and protective effects of curcumin[J]. Food and Nutrition in China,2017,23(5):59−63. doi: 10.3969/j.issn.1006-9577.2017.05.014
    [18]
    LIN Yin, LIU Hualiang, FANG Jie, et al. Anti-fatigue and vasoprotective effects of quercetin-3-O-gentiobiose on oxidative stress and vascular endothelial dysfunction induced by endurance swimming in rats[J]. Food and Chemical Toxicology,2014,68:290−296. doi: 10.1016/j.fct.2014.03.026
    [19]
    赵云蛟, 郭佳敏, 刘锐, 等. 黄秋葵饮料的抗氧化活性及抗疲劳活性研究[J]. 饮料工业,2019,22(1):5−11. [ZHAO Yunjiao, GUO Jiamin, LIU Rui, et al. Antioxidant and anti-fatigue activities of okra beverage[J]. Beverage Industry,2019,22(1):5−11. doi: 10.3969/j.issn.1007-7871.2019.01.002
    [20]
    肖凤艳, 高磊, 赵子健, 等. 短梗五加果多酚提取工艺优化及抗疲劳作用[J]. 食品科学,2018,39(22):235−240. [XIAO Fengyan, GAO Lei, ZHAO Zijian, et al. Extraction and antifatigue effect of polyphenols from the fruits of Acanthopanax sessiliflorus (Rupr. et Maxim.) seem[J]. Food Science,2018,39(22):235−240. doi: 10.7506/spkx1002-6630-201822036
    [21]
    李瑞芳. 超声波辅助提取黑果腺肋花楸黄酮及其抗运动疲劳研究[J]. 食品研究与开发,2017,38(13):63−68. [LI Ruifang. Study on ultrasonic assisted extraction of flavonoids from Aronia melanocarpa and its anti-exercise fatigue[J]. Food Research and Development,2017,38(13):63−68. doi: 10.3969/j.issn.1005-6521.2017.13.014
    [22]
    郭瑞. 白藜芦醇抗疲劳作用及其机理研究[J]. 食品研究与开发,2018,39(24):174−179. [GUO Rui. Effect and mechanism of resveratrol for anti-fatigue[J]. Food Research and Development,2018,39(24):174−179. doi: 10.3969/j.issn.1005-6521.2018.24.030
    [23]
    高庆超, 束彤, 常应九, 等. 改性青稞β-葡聚糖荷载黑枸杞花青素微胶囊溶液抗疲劳功能的评价[J]. 食品科技,2019,44(1):316−320. [GAO Qingchao, SHU Tong, CHANG Yingjiu, et al. The evaluation of anti-fatigue function of the solution of microencapsulation loading anthocyanidins of Lycium ruthenicum Murr by modified β-glucan from highland barley[J]. Food Science and Technology,2019,44(1):316−320.
    [24]
    葛阳阳, 董国玲, 徐飞, 等. 黑豆素蛋白粉润肠通便及抗疲劳功能的研究[J]. 食品科技,2019,44(05):102−108. [GE Yangyang, DONG Guoling, XU Fei, et al. The laxative and anti-fatigue function of the black soybean protein powder[J]. Food Science and Technology,2019,44(05):102−108.
    [25]
    MIZUNOYA W, OKAMOTO S, MIYAHARA H, et al. Fast-to-slow shift of muscle fiber-type composition by dietary apple polyphenols in rats: Impact of the low-dose supplementation[J]. Animal Science Journal = Nihon Chikusan Gakkaiho,2017,88(3):489−499.
    [26]
    薛勇闯, 周永玲, 陈国亮. 龙葵果提取物抗氧化活性及抗疲劳作用的研究[J]. 粮食与油脂,2020,33(11):126−128. [XUE Yongchuang, ZHOU Yongling, CHEN Guoliang. Study on antioxidant activity and antifatigue activity of Solanum nigrum extracts[J]. Cereals & Oils,2020,33(11):126−128.
    [27]
    贺敏, 王庆军, 丁雪洁, 等. 黑青稞籽皮提取物提高小鼠耐缺氧及抗疲劳能力的初步研究[J]. 中国医药导报,2014,11(28):7−10. [HE Min, WANG Qingjun, DING Xuejie, et al. Preliminary study of black barley pericarp extract on the ability of anti-hypoxia and anti-fatigue of mice[J]. China Medical Herald,2014,11(28):7−10.
    [28]
    WILLEMS MARK E T, BRADLEY M, SAM D, et al. Effect of New Zealand Blackcurrant extract on isometric contraction-induced fatigue and recovery: Potential muscle-fiber specific effects[J]. Sports,2020,8(135):135.
    [29]
    ZHOU Sisi, JIANG Jianguo. Anti-fatigue effects of active ingredients from traditional Chinese medicine: A review[J]. Current Medicinal Chemistry,2019,26(10):1833−1848. doi: 10.2174/0929867324666170414164607
    [30]
    MAHDI V, SEYED MOHAMMAD N, SAMINEH J, et al. Natural activators of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities[J]. Food & Chemical Toxicology,2018,122:69−79.
    [31]
    WEN Wanxue, CHEN Xiaoling, HUANG Zhiqing, et al. Lycopene increases the proportion of slow-twitch muscle fiber by AMPK signaling to improve muscle anti-fatigue ability[J]. The Journal of Nutritional Biochemistry,2021,94:108750. doi: 10.1016/j.jnutbio.2021.108750
    [32]
    YUE Tao, ZHAN Xiaoming, ZHANG Duanwu, et al. SLFN2 protection of tRNAs from stress-induced cleavage is essential for T cell-mediated immunity[J]. Science (New York, N. Y. ),2021,372(6543):eaba4220. doi: 10.1126/science.aba4220
    [33]
    SUGITA M, KAPOOR M P, NISHIMURA A. et al. Influence of green tea catechins on oxidative stress metabolites at rest and during exercise in healthy humans[J]. Nutrition,2016,32(3):321−331. doi: 10.1016/j.nut.2015.09.005
    [34]
    WÓJCIK P, GĘGOTEK A, ŽARKOVIĆ N, et al. Oxidative stress and lipid mediators modulate immune cell functions in autoimmune diseases[J]. International Journal of Molecular Sciences,2021,22(723):723.
    [35]
    HERRANZ-LÓPEZ M, BARRAJÓN-CATALÁN E, SEGURA-CARRETERO A, et al. Lemon verbena (Lippia citriodora) polyphenols alleviate obesityrelated disturbances in hypertrophic adipocytes through AMPK-dependent mechanisms[J]. Phytomedicine,2015,22(6):605−614. doi: 10.1016/j.phymed.2015.03.015
    [36]
    SONG Chao, HEPING Huangfu, SHEN Yongshu, et al. AMPK/p38/Nrf2 activation as a protective feedback to restrain oxidative stress and inflammation in microglia stimulated with sodium fluoride[J]. Chemosphere,2020,244:125495. doi: 10.1016/j.chemosphere.2019.125495
    [37]
    LU Jingjing, JIANG Huijie, LIU Biying, et al. Grape seed procyanidin extract protects against Pb-induced lung toxicity by activating the AMPK/Nrf2/p62 signaling axis[J]. Food & Chemical Toxicology,2018,116(Part B):59−69.
    [38]
    TASKIN RUHEE R, SUZUKI K. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: A review of a potential protective phytochemical[J]. Antioxidants,2020,9(521):521.
    [39]
    SILVA-PALACIOS A, OSTOLGA-CHAVARRÍA M, ZAZUETA C, et al. Nrf2: Molecular and epigenetic regulation during aging[J]. Ageing Research Reviews,2018,47:31−40. doi: 10.1016/j.arr.2018.06.003
    [40]
    范小曼. 白花败酱单宁的提取、分离及活性研究[D]. 杭州: 浙江大学, 2014.

    FAN Xiaoman. Extraction, separation and activity study of tannin of Patrinia Villosa Juss[D]. Hangzhou: Zhejiang university, 2014.
    [41]
    陈慧, 马璇, 曹丽行, 等. 运动疲劳机制及食源性抗疲劳活性成分研究进展[J]. 食品科学,2020,41(11):247−258. [CHEN Hui, MA Xuan, CAO Lixing, et al. Recent progress in the mechanism behind exercise induced fatigue and dietary bioactive components against fatigue[J]. Food Science,2020,41(11):247−258. doi: 10.7506/spkx1002-6630-20190620-235
    [42]
    RTENBLAD N, WESTERBLAD H, NIELSEN J. Muscle glycogen stores and fatigue[J]. The Journal of Physiology,2013,591(18):4405−4413. doi: 10.1113/jphysiol.2013.251629
    [43]
    LIU D, XIAO H, CAO Y, et al. Antifatigue ability of tea polyphenols in exercising rats after intragastric administration[J]. Indian Journal of Pharmaceutical Sciences,2019,81(Special):191−196.
    [44]
    WU Meiling, ZHANG Chunwang, XIE Mengdan, et al. Compartmentally scavenging hepatic oxidants through AMPK/SIRT3-PGC1α axis improves mitochondrial biogenesis and glucose catabolism[J]. Free Radical Biology & Medicine,2021,168:117−128.
    [45]
    WANG X L, LI T, LI J H, et al. The effects of resveratrol on inflammation and oxidative stress in a rat model of chronic obstructive pulmonary disease[J]. Molecules,2017,22(9):1529. doi: 10.3390/molecules22091529
    [46]
    WAFI A M, HONG J, RUDEBUSH T L, et al. Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle[J]. Journal of Applied Physiology,2019,126(2):477−486. doi: 10.1152/japplphysiol.00654.2018
    [47]
    LU Yun, MAO Jiaqi, HAN Xinxin, et al. Downregulated hypoxia-inducible factor 1α improves myoblast differentiation under hypoxic condition in mouse genioglossus[J]. Molecular and Cellular Biochemistry, 2021.
    [48]
    XU Meng, CHEN Xiaoling, HUANG Zhiqing, et al. Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation via AMPK signaling pathway[J]. The Journal of Nutritional Biochemistry,2020,84:108462. doi: 10.1016/j.jnutbio.2020.108462
    [49]
    SU Kangyi, YU Chaoyuan, CHEN Yuewen, et al. Rutin, a flavonoid and principal component of saussurea involucrata, attenuates physical fatigue in a forced swimming mouse model[J]. International Journal of Medical Sciences,2014,11(5):528−537. doi: 10.7150/ijms.8220
    [50]
    史晓宇, 宋越, 冯敏, 等. 穴位埋线对运动性疲劳大鼠能量代谢水平的影响[J]. 中国畜牧兽医,2021(2):747−754. [SHI Xiaoyue, SONG Yue, FENG Min, et al. Thread-embedding therapy for regulating energy metabolism in exercise-induced fatigue[J]. China Animal Husbandry & Veterinary Medicine,2021(2):747−754.
    [51]
    BELAND-MILLARA A, TAKIMOTOB M, HAMADAB T, et al. Brain and muscle adaptation to high-fat diets and exercise: Metabolic transporters, enzymes and substrates in the rat cortex and muscle[J]. Brain Research,2020,1749:147126. doi: 10.1016/j.brainres.2020.147126
    [52]
    LIU Guoyan, YANG Xue, ZHANG Jixian, et al. Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides[J]. International Journal of Biological Macromolecules,2021,179:418−428. doi: 10.1016/j.ijbiomac.2021.03.018
    [53]
    QIN Bolin, POLANSKY M M, HARRY D, et al. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism in insulin-resistant rats[J]. Molecular Nutrition & Food Research, 2010, 54(S1): S14−S23.
    [54]
    杜云. 茶多酚对运动大鼠抗疲劳作用的实验研究[J]. 西北大学学报(自然科学版),2012,42(5):783−786. [DU Yun. The Experimental study about anti-fatigue effect of tea polyphenols on the movement of rats[J]. Journal of Northwest University(Natural Science Edition),2012,42(5):783−786.
    [55]
    刘琦. 大孔树脂对短梗五加多酚的纯化效果及多酚的抗疲劳作用研究[J]. 保鲜与加工,2020,20(4):171−177. [LIU Qi. Study on the purification of polyphenols extract from Acanthopanax sessiliflorus by macroporous resin and its anti-fatigue effect[J]. Storage and Process,2020,20(4):171−177. doi: 10.3969/j.issn.1009-6221.2020.04.027
    [56]
    ULRIKE H, CATRIN H, KRISTINA N. Anti-inflammatory diets and fatigue[J]. Nutrients,2019,11(10):2315. doi: 10.3390/nu11102315
    [57]
    CHRISTINE B-S, ANIKA W, SIEGFRIED W. Effect of quercetin on inflammatory gene expression in mice liver in vivo-role of redox factor 1, miRNA-122 and miRNA-125b[J]. Pharmacological Research,2012,65(5):523−530. doi: 10.1016/j.phrs.2012.02.007
    [58]
    杨威. 茶多酚补充对一次性力竭运动大鼠血清炎症因子水平的影响[D]. 福州: 福建师范大学, 2015.

    YANG Wei. The effects of tea polyphenols supplementation on serum inflammatory cytokines in rats after one-time exhaustive exercise[D]. Fuzhou: Fujian Normal University, 2015.
    [59]
    LIU Lixia, WU Xiuqin, ZHANG Bingchen, et al. Protective effects of tea polyphenols on exhaustive exercise-induced fatigue, inflammation and tissue damage[J]. Food & Nutrition Research,2017,61(1):1333390.
  • Cited by

    Periodical cited type(11)

    1. 李萌,阿丽古丽·买买提依明,李建瑛,李叶,李倩,王瑞,尹东锋. 复方参及合剂对小鼠抗缺氧及疲劳的作用研究. 中国药业. 2024(08): 44-48 .
    2. 徐碧芸,张华艺,李静榕,徐昕,赵圣美,朱家琳,尹作成,邱涛涛. 茶叶中主要活性成分抗运动性疲劳作用机制研究进展. 茶叶通讯. 2024(02): 160-167 .
    3. 闫洛美,扎克亚古丽·吾加买提,郝娟,胡时先,刘宣麟,木合布力·阿布力孜. 紫外可见分光光度法测定肉苁蓉配方茶中总黄酮、总多酚、总多糖及总皂苷的含量. 食品安全导刊. 2024(24): 94-100 .
    4. 唐进昌. 低共熔溶剂提取沙棘果渣多酚的优化及其抗运动疲劳研究. 中国食品添加剂. 2023(04): 228-234 .
    5. 杨亚萍,吕亚辉,刘飞祥,彭新. 灵芝菌丝体硒多糖结构表征、抗氧化活性及对小鼠运动疲劳的影响. 中国食品添加剂. 2023(06): 109-118 .
    6. 岳新佳. 采用溶剂法结合超声波辅助提取谷糠多酚及对运动大鼠线粒体的影响. 中国食品添加剂. 2023(07): 90-99 .
    7. 张潇,周海旭,高晗,贾亚茹. 紫甘蓝中多酚提取工艺及抗氧化研究. 河南科技学院学报(自然科学版). 2023(05): 23-29 .
    8. 张家旭,王信,叶倩女,董学凤,郭玉儿,彭腾腾,尹盼盼,李海燕,石晓峰. 松针多酚提取工艺优化及其抗氧化、酶活性抑制特征. 江苏农业学报. 2023(07): 1593-1605 .
    9. 刘佳佳,贺林娇,经宏鑫,韩涛,马利鑫,李晓斌. 补喂芒柄花素对伊犁马1000 m速度赛成绩、血气及抗氧化指标的影响. 中国畜牧兽医. 2022(05): 1738-1745 .
    10. 李守江,孔祥佳,刘智禹,赵峰,苏永昌,陈晓婷. 响应面试验优化酶解法制备鲣鱼活性肽及其对小鼠抗疲劳的影响. 康复学报. 2022(05): 407-418 .
    11. 刘佳乐,方佳慧,陈红旭,李贺. 五味子根茎叶果木脂素对D-半乳糖致衰老小鼠运动耐力的影响. 吉林医学. 2022(12): 3184-3186 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (419) PDF downloads (44) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return