Citation: | SUN Xiaoting, XU Le, XIAO Baoping, et al. Research Progress of Mitochondrial-Mediated Docosahexaenoic Acid (DHA) Antioxidation[J]. Science and Technology of Food Industry, 2022, 43(10): 475−481. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060190. |
[1] |
ONUKWUFOR J O, BERRY B J, WOJTOVICH A P. Physiologic implications of reactive oxygen species production by mitochondrial complex I reverse electron transport[J]. Antioxidants,2019,8(8):285. doi: 10.3390/antiox8080285
|
[2] |
李兴太, 纪莹. 线粒体氧化应激与天然抗氧化剂研究进展[J]. 食品科学,2015,36(7):268−277. [LI X T, JI Y. Recent advances in mitochondrial oxidative stress and natural antioxidants[J]. Food Science,2015,36(7):268−277. doi: 10.7506/spkx1002-6630-201507049
LI X T, JI Y. Recent Advances in mitochondrial oxidative stress and natural antioxidants[J]. Food Science, 2015, 36(7): 268-277. doi: 10.7506/spkx1002-6630-201507049
|
[3] |
黄文铅, 余杭, 郑一惠, 等. 线粒体相关的细胞信号分子与心血管疾病[J]. 生命科学,2018,30(7):771−778. [HUANG W Q, YU H, ZHENG Y H, et al. Mitochondrial-associated cellular signaling molecules and cardiovascular diseases[J]. Chineses Bulletin of Sciences,2018,30(7):771−778.
HUANG W Q, YU H, ZHENG Y H, et al. Mitochondrial-associated cellular signaling molecules and cardiovascular diseases[J]. Chineses Bulletin of Sciences, 2018, 30(7): 771-778.
|
[4] |
SHAHIDI F, AMBIGAIPALAN P. Omega-3 polyunsaturated fatty acids and their health benefits[J]. Annual Review of Food Science and Technology,2018,9(25):345−381.
|
[5] |
杨贤庆, 吕军伟, 林婉玲, 等. DHA功能特性以及抗氧化性研究进展[J]. 食品工业科技,2014,35(2):390−394. [YANG X Q, LYU J W, LIN W L, et al. Research progress in biological function and antioxidative activity of docosahexaenoic acid (DHA)[J]. Science and Technology of Food Industry,2014,35(2):390−394.
YANG X Q, LV J W, LIN W L, et al. Research progress in biological function and antioxidative activity of docosahexaenoic acid (DHA)[J]. Science and Technology of Food Industry, 2014, 35(2): 390-394.
|
[6] |
韩丽荣, 魏硕名, 王旭锋, 等. 二十二碳六烯酸免疫调节活性[J]. 食品科学,2018,39(3):206−212. [HAN L R, WEI S M, WANG X F, et al. Immunomodulatory activity of docosahexaenoic acid[J]. Food Science,2018,39(3):206−212. doi: 10.7506/spkx1002-6630-201803032
HAN L R, WEI S M, WANG X F, et al. Immunomodulatory activity of docosahexaenoic acid[J]. Food Science, 2018, 39(3): 206-212. doi: 10.7506/spkx1002-6630-201803032
|
[7] |
CHEN J, WANG D, ZONG Y, et al. DHA protects hepatocytes from oxidative injury through GPR120/ERK-mediated mitophagy[J]. International Journal of Molecular Sciences,2021,22(11):5675. doi: 10.3390/ijms22115675
|
[8] |
HALAPIN N A, BAZAN N G. NPD1 induction of retinal pigment epithelial cell survival involves PI3K/Akt phosphorylation signaling[J]. Neurochemical Research,2010,35(12):1944−1947. doi: 10.1007/s11064-010-0351-8
|
[9] |
刘薇, 王红霞, 王立魁, 等. COX-2/Nrf2/ARE信号通路与体内外的抗炎、抗氧化作用机理[J]. 生命科学,2011,23(10):1027−1033. [LIU W, WANG H X, WANG L K, et al. COX-2 and Nrf2/ARE signaling pathways in anti-inflammation and antioxidation in vivo and in vitro[J]. Chineses Bulletin of Sciences,2011,23(10):1027−1033.
LIU W, WANG H X, WANG L K, et al. COX-2 and Nrf2/ARE signaling pathways in anti-inflammation and antioxidation in vivo and in vitro[J]. Chineses Bulletin of Sciences, 2011, 23(10): 1027-1033.
|
[10] |
刘越峰, 罗卫民, 张勇, 等. DHA激活NADPH氧化酶/ROS/Nrf2通路诱导ARPE-19细胞表达HO-1[J]. 中国免疫学杂志,2016,32(5):644−647. [LIU Y F, LUO W M, ZHANG Y, et al. Docosahexaenoic acid induces retinal pigment epithelial cells expression of heme oxygenase-1 by activation of NADPH oxidase/ROS/Nrf2[J]. Chinese Journal of Immunology,2016,32(5):644−647. doi: 10.3969/j.issn.1000-484X.2016.05.009
LIU Y F, LUO W M, ZHANG Y, et al. Docosahexaenoic acid induces retinal pigment epithelial cells expression of heme oxygenase-1 by activation of NADPH oxidase /ROS /Nrf2[J]. Chinese Journal of Immunology, 2016, 32(5): 644-647. doi: 10.3969/j.issn.1000-484X.2016.05.009
|
[11] |
CALDER P C. Docosahexaenoic acid[J]. Advances in Nutrition,2016,7(6):1139−1411. doi: 10.3945/an.116.012963
|
[12] |
FAN Y Y, FUENTES N R, HOU T Y, et al. Remodelling of primary human CD4+ T cell plasma membrane order by n-3 PUFA[J]. British Journal of Nutrition,2018,119(2):163−175. doi: 10.1017/S0007114517003385
|
[13] |
GERLING C J, MUKAI K, CHABOWSKI A, et al. Incorporation of omega-3 fatty acids into human skeletal muscle sarcolemmal and mitochondrialmembranes following 12 weeks of fish oil supplementation[J]. Frontiers in Physiology,2019,29(10):348.
|
[14] |
CLEMENTI M E, LAZZARINO G, SAMPAOLESE B, et al. DHA protects PC12 cells against oxidative stress and apoptotic signals through the activation of the NFE2L2/HO-1 axis[J]. International Journal of Molecular Medicine,2019,43(6):2523−2531.
|
[15] |
LLUÍS L, TALTAVULL N, MUÑOZ-CORTÉS M, et al. Protective effect of the omega-3 polyunsaturated fatty acids: Eicosapentaenoic acid/Docosahexaenoic acid 1: 1 Ratio on cardiovascular disease risk markers in rats[J]. Lipids in Health and Disease,2013,12(1):140. doi: 10.1186/1476-511X-12-140
|
[16] |
LI G L, LI Y Y, XIAO B P, et al. Antioxidant activity of docosahexaenoic acid (DHA) and its regulatory roles in mitochondria[J]. Journal of Agricultural and Food Chemistry,2021,69(5):1647−1655. doi: 10.1021/acs.jafc.0c07751
|
[17] |
LIU W, ZABIRNYK O, WANG H, et al. MiR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer[J]. Oncogene,2010,29(35):4914−4924. doi: 10.1038/onc.2010.237
|
[18] |
HANNAFON B N, CARPENTER K J, BERRY W L, et al. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA)[J]. Molecular Cancer,2015,14(1):133. doi: 10.1186/s12943-015-0400-7
|
[19] |
HE L, HE T, FARRAR S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cellular Physiology and Biochemistry,2017,44(2):532−553. doi: 10.1159/000485089
|
[20] |
APOSTOLOVA N, VICTOR V M. Molecular strategies for targeting antioxidants to mitochondria: Therapeutic implications[J]. Antioxidants and Redox Signaling,2015,22(8):686−729. doi: 10.1089/ars.2014.5952
|
[21] |
GARREL C, ALESSANDRI J M, GUESNET P, et al. Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development[J]. International Journal of Biochemistry and Cell Biology,2012,44(1):123−131. doi: 10.1016/j.biocel.2011.10.007
|
[22] |
SONG E A, LIM J W, KIM H. Docosahexaenoic acid inhibits IL-6 expression via PPAR γ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells[J]. International Journal of Biochemistry and Cell Biology,2017,88:60−68. doi: 10.1016/j.biocel.2017.05.011
|
[23] |
王鹏, 曲丽辉, 谢金鹿, 等. DHA对沙鼠全脑缺血/再灌注诱导的海马神经元凋亡的影响[J]. 哈尔滨医科大学学报,2015,49(6):475−479. [WANG P, QU L H, XIE J L, et al. Effects of DHA on hippocampal neuronal apoptosis following global cerebral ischemia/reperfusion in gerbils[J]. Journal of Harbin Medical University,2015,49(6):475−479.
WANG P, QU L H, XIE J L, et al. Effects of DHA on hippocampal neuronal apoptosis following global cerebral ischemia /reperfusion in gerbils[J]. Journal of Harbin Medical University, 2015, 49(6): 475-479.
|
[24] |
蒋利和, 马博, 谢正轶, 等. 二十二碳六烯酸对老年大鼠脑组织抗氧化和脂肪酸的影响[J]. 食品科学,2011,32(13):284−288. [JIANG L H, MA B, XIE Z Y, et al. Effect of DHA on antioxidation and fatty acids in aged rat brain[J]. Food Science,2011,32(13):284−288.
JIANG L H, MA B, XIE Z Y, et al. Effect of DHA on antioxidation and fatty acids in aged rat brain[J]. Food Science, 2011, 32(13): 284-288.
|
[25] |
OU W, MULIK R S, ANWAR A, et al. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma[J]. Free Radical Biology and Medicine,2017,112:597−607. doi: 10.1016/j.freeradbiomed.2017.09.002
|
[26] |
DING W Q, LIND S E. Phospholipid hydroperoxide glutathione peroxidase plays a role in protecting cancer cells from docosahexaenoic acid-induced cytotoxicity[J]. Molecular Cancer Therapeutics,2007,6(4):1467−1474. doi: 10.1158/1535-7163.MCT-06-0608
|
[27] |
SINGH A, KUKRETI R, SASO L, et al. Oxidative stress: A key modulator in neurodegenerative diseases[J]. Molecules,2019,24(8):1583. doi: 10.3390/molecules24081583
|
[28] |
STANLEY W C, KHAIRALLAH R J, DABKOWSKI E R. Update on lipids and mitochondrial function: Impact of dietary n-3 polyunsaturated fatty acids[J]. Current Opinion in Clinical Nutrition and Metabolic Care,2012,15(2):122−126. doi: 10.1097/MCO.0b013e32834fdaf7
|
[29] |
MADINGOU N, GILBERT K, TOMARO L, et al. Comparison of the effects of EPA and DHA alone or in combination in a murine model of myocardial infarction[J]. Prostaglandins Leukot Essent Fatty Acids,2016,111:11−16. doi: 10.1016/j.plefa.2016.06.001
|
[30] |
SCHÖNFELD P, WOJTCZAK L. Fatty acids as modulators of the cellular production of reactive oxygen species[J]. Free Radical Biology and Medicine,2008,45(3):231−241. doi: 10.1016/j.freeradbiomed.2008.04.029
|
[31] |
李霏, 李晓曦, 尹元琴. DHA对UVB和砷引起的DNA损伤的预防作用[J]. 临床肿瘤学杂志,2019,24(3):193−200. [LI F, LI X X, YIN Y Q. Preventive effect of DHA on DNA damage induced by UVB and arsenic[J]. Chinese Clinical Oncology,2019,24(3):193−200. doi: 10.3969/j.issn.1009-0460.2019.03.001
LI F, LI X X, YIN Y Q. Preventive effect of DHA on DNA damage induced by UVB and arsenic[J]. Chinese Clinical Oncology, 2019, 24(3): 193-200. doi: 10.3969/j.issn.1009-0460.2019.03.001
|
[32] |
刘越峰, 罗卫民, 张勇, 等. 二十二碳六烯酸抑制氧化应激状态下人视网膜色素上皮细胞凋亡[J]. 中国病理生理杂志,2016,32(3):504−509. [LIU Y F, LUO W M, ZHANG Y, et al. Docosahexaenoic acid protects human retinal pigment epithelial cells against oxidative stress-induced apoptosis[J]. Chinese Journal of Pathophysiology,2016,32(3):504−509. doi: 10.3969/j.issn.1000-4718.2016.03.019
LIU Y F, LUO W M, ZHANG Y, et al. Docosahexaenoic acid protects human retinal pigment epithelial cells against oxidative stress-induced apoptosis[J]. Chinese Journal of Pathophysiology, 2016, 32(3): 504-509. doi: 10.3969/j.issn.1000-4718.2016.03.019
|
[33] |
NORDMANN C, STROKIN M, SCHÖNFELD P, et al. Putative roles of Ca2+-independent phospholipase A2 in respiratory chain-associated ROS production in brain mitochondria: Influence of docosahexaenoic acid and bromoenol lactone[J]. Journal of Neurochemistry,2014,131(2):163−176. doi: 10.1111/jnc.12789
|
[34] |
O'SHEA K M, KHAIRALLAH R J, SPARAGNA G C, et al. Dietary omega-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition[J]. Journal of Molecular and Cellular Cardiology,2009,47(6):819−827. doi: 10.1016/j.yjmcc.2009.08.014
|
[35] |
QUAN Y, XIN Y, TIAN G, et al. Mitochondrial ros-modulated mtdna: A potential target for cardiac aging[J]. Oxidative Medicine and Cellular Longevity,2020,2020:1−11.
|
[36] |
SHIRIHAI O S, SONG M, DORN G. How mitochondrial dynamism orchestrates mitophagy[J]. Circulation Research,2015,116(11):1835−1849. doi: 10.1161/CIRCRESAHA.116.306374
|
[37] |
HAEUSSLER S, KOHLER F, WITTING M, et al. Autophagy compensates for defects in mitochondrial dynamics[J]. Public Library of Science genetics,2020,16(3):e1008638.
|
[38] |
GOLPICH M, AMINI E, MOHAMED Z, et al. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment[J]. CNS Neuroscience Therapeutics,2017,23(1):5−22. doi: 10.1111/cns.12655
|
[39] |
BUSQUETS-CORTES C, CAPÓ X, MARTORELL M, et al. Training enhances immune cells mitochondrial biosynthesis, fission, fusion, and their antioxidant capabilities synergistically with dietary docosahexaenoic supplementation[J]. Oxidative Medicine and Cellular Longevity,2016,2016:8950384.
|
[40] |
ZHANG T, WU P, ZHANG J H, et al. Docosahexaenoic acid alleviates oxidative stress-based apoptosis via improving mitochondrial dynamics in early brain injury after subarachnoid hemorrhage[J]. Cellular and Molecular Neurobiollogy,2018,38(7):1413−1423. doi: 10.1007/s10571-018-0608-3
|
[41] |
POPOV L D. Mitochondrial biogenesis: An update[J]. Journal of Cellular and Molecular Medicine,2020,24(9):4892−4899. doi: 10.1111/jcmm.15194
|
[42] |
PICCA A, LEZZA A M. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies[J]. Mitochondrion,2015,25(2015):67−75.
|
[43] |
LEE M S, SHIN Y, MOON S, et al. Effects of eicosapentaenoic acid and docosahexaenoic acid on mitochondrial DNA replication and PGC-1 alpha gene expression in C2C12 muscle cells[J]. Preventive Nutrition and Food Science,2016,21(4):317−322. doi: 10.3746/pnf.2016.21.4.317
|
[44] |
XU Y, WAHLBERG K, LOVE T M, et al. Associations of blood mercury and fatty acid concentrations with blood mitochondrial DNA copy number in the seychelles child development nutrition study[J]. Environment International,2019,124:278−283. doi: 10.1016/j.envint.2019.01.019
|
[45] |
ROSSIGNOLI C P, DECHANDT C R P, SOUZA A O, et al. Effects of intermittent dietary supplementation with conjugated linoleic acid and fish oil (EPA/DHA) on body metabolism and mitochondrial energetics in mice[J]. Journal of Nutritional Biochemistry,2018,60:16−23. doi: 10.1016/j.jnutbio.2018.07.001
|
[46] |
KWAK Y S, LIM S Y. The combined impacts of docosahexaenoic acid, endurance physical exercise, and prolonged fasting on brain function[J]. Journal of Exercise Rehabilitation,2018,14(4):540−544. doi: 10.12965/jer.1836298.149
|
[47] |
郑凯, 杨梅桂, 闫朝君, 等. 线粒体动力学与细胞凋亡[J]. 中国细胞生物学学报,2019,41(8):1467−1476. [ZHENG K, YANG M G, YAN Z J, et al. Mitochondrial dynamics and apoptosis[J]. Chinese Journal of Cell Biology,2019,41(8):1467−1476.
ZHENG K, YANG M G, YAN Z J, et al. Mitochondrial dynamics and apoptosis[J]. Chinese Journal of Cell Biology, 2019, 41(8): 1467-1476.
|
[48] |
DARWESH A M, JAMIESON K L, WANG C, et al. Cardioprotective effects of CYP-derived epoxy metabolites of docosahexaenoic acid involve limiting NLRP3 inflammasome activation1[J]. Canadian Journal of Physiology and Pharmacology,2019,97(6):544−556. doi: 10.1139/cjpp-2018-0480
|
[49] |
MOHAMMAD G, RADHAKRISHNAN R, KOWLURU R A. Epigenetic modifications compromise mitochondrial DNA quality control in the development of diabetic retinopathy[J]. Investigative Ophthalmology and Visual Science,2019,60(12):3943−3951. doi: 10.1167/iovs.19-27602
|
[50] |
MATILAINEN O, QUIROS P M, AUWERX J. Mitochondria and epigenetics-crosstalk in homeostasis and stress[J]. Trends in Cell Biology,2017,27(6):453−463. doi: 10.1016/j.tcb.2017.02.004
|
[51] |
PHAM T X, BAE M, LEE Y, et al. Transcriptional and posttranscriptional repression of histone deacetylases by docosahexaenoic acid in macrophages[J]. Journal of Nutritional Biochemistry,2018,57:162−169. doi: 10.1016/j.jnutbio.2018.03.002
|
[52] |
GEIGER J, DALGAARD L T. Interplay of mitochondrial metabolism and microRNAs[J]. Cellular and Molecular Life Sciences,2016,74(4):631−646.
|
[53] |
DAS S, FERLITO M, KENT O A, et al. Nuclear miRNA regulates the mitochondrial genome in the heart[J]. Circulation Research,2012,110(12):1596−1603. doi: 10.1161/CIRCRESAHA.112.267732
|
[54] |
MUTHARASAN R K, NAGPAL V, ICHIKAWA Y, et al. MicroRNA-210 is upregulated in hypoxic cardiomyocytes through Akt- and p53-dependent pathways and exerts cytoprotective effects[J]. American Journal of Physiology Heart and Circulatory Physiology,2011,301(4):H1519−H1530. doi: 10.1152/ajpheart.01080.2010
|
[55] |
FAVARO E, RAMACHANDRAN A, MCCORMICK R, et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU[J]. Public Library of Science One,2010,5(4):e10345.
|
[56] |
PATRON J P, FENDLER A, BILD M, et al. MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis[J]. Public Library of Science One,2012,7(4):e35345.
|
[57] |
LI R, YAN G, LI Q, et al. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondria apoptotic pathway[J]. Public Library of Science One,2012,7(9):e44907.
|
[58] |
BAI X Y, MA Y, DING R, et al. MiR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes[J]. Journal of the American Society of Nephrology,2011,22(7):1252−1261. doi: 10.1681/ASN.2010040367
|
[59] |
ASCHRAFI A, KAR A N, NATERA-NARANJO O, et al. MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery[J]. Cellular and Molecular Life Sciences,2012,69(23):4017−4027. doi: 10.1007/s00018-012-1064-8
|
[60] |
王艺霏, 敖翔, 刘英, 等. 线粒体miRNA及其生物学功能[J]. 中国细胞生物学学报,2018,40(7):1247−1252. [WANG Y F, AO X, LIU Y, et al. Mitochondrial miRNAs and their biological functions[J]. Chinese Journal of Cell Biology,2018,40(7):1247−1252. doi: 10.11844/cjcb.2018.07.0366
WANG Y F, AO X, LIU Y, et al. Mitochondrial miRNAs and their biological functions[J]. Chinese Journal of Cell Biology, 2018, 40(7): 1247-1252. doi: 10.11844/cjcb.2018.07.0366
|
[61] |
谭佳, 肖晨, 陈金娜, 等. MiRNA调控线粒体功能的研究进展[J]. 生命的化学,2020,40(2):250−255. [TAN J, XIAO C, CHEN J N, et al. Research progress of miRNA on mitochondrial function[J]. Chemistry of Life,2020,40(2):250−255.
TAN J, XIAO C, CHEN J N, et al. Research progress of miRNA on mitochondrial function[J]. Chemistry of Life, 2020, 40(2): 250-255.
|
[62] |
ZHANG Y, XU H. Translational regulation of mitochondrial biogenesis[J]. Biochemical Society Transactions,2016,44(6):1717−1724. doi: 10.1042/BST20160071C
|
[63] |
ROLLAND S G, CONRADT B. New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics[J]. Current Opinion in Cell Biology,2010,22(6):852−858. doi: 10.1016/j.ceb.2010.07.014
|
[64] |
ZHAO Y, WANG X. MiR-34a targets BCL-2 to suppress the migration and invasion of sinonasal squamous cell carcinoma[J]. Oncology Letters,2018,16(5):6566−6572.
|
[65] |
DAI X, LI M, GENG F. Omega-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid enhance dexamethasone sensitivity in multiple myeloma cells by the p53/miR-34a/Bcl-2 Axis[J]. Biochemistry,2017,82(7):826−833.
|
[66] |
EGAN B T, VICZENCZOVA C, SZEIFFOVA B B, et al. Obesity-associated alterations in cardiac connexin-43 and PKC signaling are attenuated by melatonin and omega-3 fatty acids in female rats[J]. Molecular and Cellular Biochemistry,2019,454(1−2):191−202. doi: 10.1007/s11010-018-3463-0
|
[67] |
VAN B E, RIOUFOL G, POUILLOT C, et al. Outcome impact of coronary revascularization strategy reclassification with fractional flow reserve at time of diagnostic angiography: Insights from a large French multicenter fractional flow reserve registry[J]. Circulation,2014,129(2):173−175. doi: 10.1161/CIRCULATIONAHA.113.006646
|
[68] |
WANG J J, BIE Z D, SUN C F. Long noncoding RNA AK088388 regulates autophagy through miR-30a to affect cardiomyocyte injury[J]. Journal of Cellular Biochemistry,2019,120(6):10155−10163. doi: 10.1002/jcb.28300
|
[69] |
黄菊华, 李蕴成. DHA的功能及在食品添加中的应用研究[J]. 中国食物与营养,2014,20(4):76−79. [HUANG J H, LI X C. Functions of DHA and its application in food addictives[J]. Food and Nutrition in China,2014,20(4):76−79. doi: 10.3969/j.issn.1006-9577.2014.04.020
HUANG J H, LI X C. Functions of DHA and its application in food addictives[J]. Food and Nutrition in China, 2014, 20(4): 76-79. doi: 10.3969/j.issn.1006-9577.2014.04.020
|
[70] |
HSUEH T Y, BAUM J I, HUANG Y. Effect of eicosapentaenoic acid and docosahexaenoic acid on myogenesis and mitochondrial biosynthesis during murine skeletal muscle cell differentiation[J]. Frontiers in Nutrition,2018,5:15. doi: 10.3389/fnut.2018.00015
|