Citation: | TIAN Sheng, WANG Yi, WU Dechao, et al. Chemical Composition of Arctium lappa Roots Fermented by Aspergillus niger and Its Inhibition on α-Glucosidase and α-Amylase[J]. Science and Technology of Food Industry, 2022, 43(10): 50−55. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060161. |
[1] |
国家药典委员会. 中华人民共和国药典(一部)[S]. 北京: 中国标准出版社, 2020, 73
.State Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China (Part I)[S]. Beijing: China Medical Science and Technology Standard Press, 2020, 73.
|
[2] |
CHAN Y S, CHENG L N, WU J H, et al. A review of the pharmacological effects of Arctium lappa (burdock)[J]. Inflammopharmacology,2010,19(5):245−254.
|
[3] |
ROMUALDO G R, SILVA E D A, DA SILVA T C, et al. Burdock (Arctium lappa L. ) root attenuates preneoplastic lesion development in a diet and thioacetamide-induced model of steatohepatitis-associated hepatocarcinogenesis[J]. Environmental Toxicology,2020,35(4):518−527. doi: 10.1002/tox.22887
|
[4] |
FERRACANE R, GRAZIANI G, GALLO M, et al. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves[J]. Journal of Pharmaceutical & Biomedical Analysis,2010,51(2):399−404.
|
[5] |
刘雪辉, 李觅路, 谭斌, 等. 紫甘薯茎叶中绿原酸及异绿原酸对α-葡萄糖苷酶的抑制作用[J]. 现代食品科技,2014,30(3):103−107. [LIU X H, LI M L, TAN B, et al. Inhibitory effects of chlorogenic acid and isochlorogenic acid from purple sweet potato leaves on α-glucosidase[J]. Modern Food Science and Technology,2014,30(3):103−107.
LIU X H, LI M L, TAN B, et al. Inhibitory effects of chlorogenic acid and isochlorogenic acid from purple sweet potato leaves on α-glucosidase[J]. Modern Food Science and Technology, 2014, 30(3): 103-107.
|
[6] |
ZHENG Y X, YANG W H, SUN W X, et al. Inhibition of porcine pancreatic α-amylase activity by chlorogenic acid[J]. Journal of Functional Foods,2020,64:103587. doi: 10.1016/j.jff.2019.103587
|
[7] |
张雪娇, 田欢, 刘春叶, 尤静. 可见分光光度法测定α-淀粉酶活力[J]. 化学与生物工程,2020,37(3):65−68. [ZHANG X J, TIAN H, LIU C Y, et al. Determination of the activity of α-amylase by visible spectrophotometry[J]. Chemistry & Bioengineering,2020,37(3):65−68. doi: 10.3969/j.issn.1672-5425.2020.03.013
ZHANG X J, TIAN H, LIU C Y, et al. Determination of the activity of α-amylase by visible spectrophotometry[J]. Chemistry & Bioengineering, 2020, 37(3): 65-68. doi: 10.3969/j.issn.1672-5425.2020.03.013
|
[8] |
PADAYACHEE A, NETZEL G, NETZEL M, et al. Binding of polyphenols to plant cell wall analogues-part 2: Phenolic acids[J]. Food Chemistry,2012,135(4):2287−2292. doi: 10.1016/j.foodchem.2012.07.004
|
[9] |
YIN Z N, WU W J, SUN C Z, et al. Comparison of releasing bound phenolic acids from wheat bran by fermentation of three Aspergillus species[J]. International Journal of Food Science & Technology,2017,53(5):1120−1130.
|
[10] |
HAN C H, HONG S Y, LEE H H, et al. Enhancement of 1-deoxynojirimycin content in leaf extracts of Morus alba L. by lactic acid bacteria fermentation[J]. Research on Crops,2017,18(4):783−788. doi: 10.5958/2348-7542.2017.00129.2
|
[11] |
LI C, ZHOU J W, DU G C, et al. Developing Aspergillus niger as a cell factory for food enzyme production[J]. Biotechnology Advances,2020,44(15):107630.
|
[12] |
ZHANG X Y, CHEN J, LI X L, et al. Dynamic changes in antioxidant activity and biochemical composition of tartary buckwheat leaves during Aspergillus niger fermentation[J]. Journal of Functional Foods,2017,32:375−381. doi: 10.1016/j.jff.2017.03.022
|
[13] |
XIAO Y, WU X, YAO X, et al. Metabolite profiling, antioxidant and α-glucosidase inhibitory activities of buckwheat processed by solid-state fermentation with Eurotium cristatum YL-1[J]. Food Research International,2021,143(11):110262.
|
[14] |
WANG X, HAN M, ZHANG M, et al. In vitro evaluation of the hypoglycemic properties of lactic acid bacteria and its fermentation adaptability in apple juice[J]. LWT-Food Science and Technology,2021,136(1):110363.
|
[15] |
RYAN C M, KHOO W, YE L, et al. Loss of native flavanols during fermentation and roasting does not necessarily reduce digestive enzyme-inhibiting bioactivities of cocoa[J]. Journal of Agricultural & Food Chemistry,2016,64(18):3616−3625.
|
[16] |
屠玥之, 姜启兴, 于沛沛, 等. 发酵牛蒡茶的风味物质与营养成分研究[J]. 食品工业科技,2014,35(17):337−342. [TU Y Z, JIANG Q X, YU P P, et al. Volatile flavor compounds and nutrients analysis of fermented burdock tea[J]. Science and Technology of Food Industry,2014,35(17):337−342.
TU Y Z, JIANG Q X, YU P P, et al. Volatile flavor compounds and nutrients analysis of fermented burdock tea[J]. Science and technology of food industry, 2014, 35(17): 337-342.
|
[17] |
NATSIR H, WAHAB A W, LAGA A, et al. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro[J]. Journal of Physics Conference Series,2018,979:012019. doi: 10.1088/1742-6596/979/1/012019
|
[18] |
孙小玲, 何凡. 牛蒡根RRLC指纹图谱研究[J]. 时珍国医国药,2017,28(2):382−384. [SUN X L, HE F. RRLC fingerprint of Arctium lappa root[J]. Lishizhen Medicine and Materia Medica Research,2017,28(2):382−384.
SUN X L, HE F. RRLC fingerprint of Arctium lappa root[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(2): 382-384.
|
[19] |
张华婷, 王源, 阮克锋, 等. 中药牛蒡子中的α-葡萄糖苷酶抑制剂研究[J]. 中药新药与临床药理,2020,31(2):163−168. [ZHANG H T, WANG Y, RUAN K F, et al. Study on α-glucosidase inhibitors in Arctii Fructus[J]. Traditional Chinese Drug Research & Clinical Pharmacology,2020,31(2):163−168.
ZHANG H T, WANG Y, RUAN K F, et al. Study on α-glucosidase inhibitors in Arctii Fructus[J]. Traditional Chinese Drug Research & Clinical Pharmacology, 2020, 31(2): 163-168.
|
[20] |
郑子新, 宋瑞霞, 滕俊英, 等. 咖啡酸对正常小鼠糖脂代谢的影响[J]. 中国临床康复,2005,9(23):121−123. [ZHENG Z X, SONG R X, TENG J Y, et al. Effects of caffeic acid on carbohydrate and lipid metabolism of normal mice[J]. Chinese Journal of Clinical Rehabilitation,2005,9(23):121−123.
ZHENG Z X, SONG R X, TENG J Y, et al. Effects of caffeic acid on carbohydrate and lipid metabolism of normal mice[J]. Chinese Journal of Clinical Rehabilitation, 2005, 9(23): 121-123.
|
[21] |
徐冬兰, 王晴川, 曾晓雄, 等. 苦丁冬青苦丁茶咖啡酰奎尼酸类物质与α-淀粉酶的相互作用特性[J]. 食品科学,2016,37(13):6−12. [XU D L, WANG Q C, ZENG X X, et al. Interaction properties of caffeoylquinic acid derivatives from Ilex kudingcha C. J. Tseng with α-amylase[J]. Food Science,2016,37(13):6−12. doi: 10.7506/spkx1002-6630-201613002
XU D L, WANG Q C, ZENG X X, et al. Interaction properties of caffeoylquinic acid derivatives from Ilex kudingcha C. J. Tseng with α-amylase[J]. Food Science, 2016, 37(13): 6-12. doi: 10.7506/spkx1002-6630-201613002
|
[22] |
NARITA Y, INOUYE K. Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas alpha-amylase isozymes I and II[J]. Journal of Agricultural & Food Chemistry,2009,57(19):9218−25.
|
[23] |
KOJIMA M, KONDO T. An enzyme in sweet potato root which catalyzes the conversion of chlorogenic acid, 3-caffeoylquinic acid, to isochlorogenic acid, 3,5-dicaffeoylquinic acid[J]. Bioscience, Biotechnology, and Biochemistry,1985,49(8):2467−2469.
|
[24] |
DAWIDOWICZ A L, TYPEK R. Transformation of chlorogenic acid during the coffee beans roasting process[J]. European Food Research and Technology,2017,243:379−390. doi: 10.1007/s00217-016-2751-8
|
[25] |
李云, 周明眉, 邢丽娜, 等. 绿原酸的肠道菌群代谢研究进展[J]. 中草药,2015,46(4):610−614. [LI Y, ZHOU M M, XING L N, et al. Advances in study on gut flora metabolism of chlorogenic acid[J]. Chinese Traditional and Herbal Drugs,2015,46(4):610−614.
LI Y, ZHOU M M, XING L N, et al. Advances in study on gut flora metabolism of chlorogenic acid[J]. Chinese Traditional and Herbal Drugs, 2015, 46(4): 610-614.
|
[26] |
程漩格, 王素军, 曾洁, 等. 异绿原酸A在大鼠体内的生物利用度和药物代谢动力学[J]. 中国实验方剂学杂志,2015,21(16):79−82. [CHENG X G, WANG S J, ZENG J, et al. Absolute bioavailability and pharmacokinetics of isochlorogenic acid a in rats[J]. Chinese Journal of Experimental Traditional Medical Formulae,2015,21(16):79−82.
CHENG X G, WANG S J, ZENG J, et al. Absolute bioavailability and pharmacokinetics of isochlorogenic acid a in rats[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2015, 21(16): 79-82.
|
[27] |
WANG J, CAO G, WANG H, et al. Characterization of isochlorogenic acid A metabolites in rats using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry[J]. Biomedical Chromatography,2017:e3927.
|
[28] |
裴瑜, 董旭, 唐心一, 等. 咖啡酸对2型糖尿病大鼠血糖浓度的影响[J]. 中国当代医药,2018,25(25):16−18,22. [PEI Y, DONG X, TANG X Y, et al. Infuence of caffeic acid on blood glucose concentration in rats with type 2 diabetes mellitus[J]. China Modern Medicine,2018,25(25):16−18,22. doi: 10.3969/j.issn.1674-4721.2018.25.005
PEI Y, DONG X, TANG X Y, et al. Infuence of caffeic acid on blood glucose concentration in rats with type 2 diabetes mellitus[J]. China Modern Medicine, 2018, 25(25): 16-18, 22. doi: 10.3969/j.issn.1674-4721.2018.25.005
|