WEI Zhen, SONG Hongbo, AN Fengping, et al. Protective Effects and Mechanism of Polysaccharide from Polygonati rhizoma on Behavioral Despair Mice[J]. Science and Technology of Food Industry, 2022, 43(6): 351−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060137.
Citation: WEI Zhen, SONG Hongbo, AN Fengping, et al. Protective Effects and Mechanism of Polysaccharide from Polygonati rhizoma on Behavioral Despair Mice[J]. Science and Technology of Food Industry, 2022, 43(6): 351−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060137.

Protective Effects and Mechanism of Polysaccharide from Polygonati rhizoma on Behavioral Despair Mice

More Information
  • Received Date: June 16, 2021
  • Available Online: January 16, 2022
  • Objective: To study the protective effects of polysaccharide from Polygonati rhizoma (PSP) on acute behavioral despair mice and the underlying mechanisms. Methods: A total of 60 ICR mice were randomly divided into the control group, the paroxetine group (10 mg/kg), PSP-low group (100 mg/kg), PSP-medium group (200 mg/kg), and PSP-high group (400 mg/kg). After 3 weeks of administration, the effect of PSP on the body weight and locomotor activity of mice was investigated by body weight and open field. The tail suspension and the forced swimming test were conducted to evaluate the antidepressant effect of PSP. In addition, 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA) levels in cortex, tumor necrosis factor (TNF-α), interleukin-10 (IL-10) levels in serum as well as tryptophan (TRP), 5-hydroxyindolacetic acid (5-HIAA) and 3-hydroxycaninuric acid (3-HK) contents in hippocampus of mice were evaluated to explore the molecular mechanism of antidepressant effect. Results: The PSP administration remarkably shortened the immobility time of the behavioral despair model mice both in tail suspension test and forced swimming test (P<0.05), showing the antidepressant activity. At the same time, PSP had no influence on the body weight and locomotor activity of mice (P>0.05). Moreover, PSP (200 and 400 mg/kg) significantly elevated the levels of 5-HT, DA and NE in cortex (P<0.05), decreased the TNF-α and IL-10 release in serum (P<0.05), as well as inhibited the levels of TRP and 3-HK (P<0.05) in hippocampus of mice compared to those of control group. Conclusion: PSP (200 and 400 mg/kg) exerted remarkable antidepressant activity in behavioral despair mice probably by promoting monoamine neurotransmitter release, inhibiting inflammatory cytokines levels, and regulating tryptophan metabolism.
  • [1]
    ROGERS A H, ZVOLENSKY M J, DITRE J W, et al. Association of opioid misuse with anxiety and depression: A systematic review of the literature[J]. Clinical Psychology Review,2021,84:101978. doi: 10.1016/j.cpr.2021.101978
    [2]
    WANG S, LERI F, RIZVI S J. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2021,110:110289. doi: 10.1016/j.pnpbp.2021.110289
    [3]
    MORENO-AGOSTINO D, WU Y T, DASKALOPOULOU C, et al. Global trends in the prevalence and incidence of depression: A systematic review and meta-analysis[J]. Journal of Affective Disorders,2021,281:235−243. doi: 10.1016/j.jad.2020.12.035
    [4]
    WONG V W, HO F Y, SHI N, et al. Lifestyle medicine for depression: A meta-analysis of randomized controlled trials[J]. Journal of Affective Disorders,2021,284:203−216. doi: 10.1016/j.jad.2021.02.012
    [5]
    LA CHANCE L R, RAMSEY D. Antidepressant foods: An evidence-based nutrient profiling system for depression[J]. World Journal of Psychiatry,2018,8(3):97−104. doi: 10.5498/wjp.v8.i3.97
    [6]
    WONG K H, KANAGASABAPATHY G, BAKAR R, et al. Restoration of sensory dysfunction following peripheral nerve injury by the polysaccharide from culinary and medicinal mushroom, Hericium erinaceus (Bull.: Fr. ) Pers. through its neuroregenerative action[J]. Food Science and Technology (Campinas), 2015, 35(4): 712−721.
    [7]
    XIANG Q, ZHOU W Y, HU W X, et al. Neuroprotective effects of Rhizoma dioscoreae polysaccharides against neuronal apoptosis induced by in vitro hypoxia[J]. Experimental and Therapeutic Medicine,2015,10(6):2063−2070. doi: 10.3892/etm.2015.2819
    [8]
    ZHAO W, PAN X, LI T, et al. Lycium barbarum polysaccharides protect against trimethyltin chloride-induced apoptosis via sonic hedgehog and PI3K/Akt signaling pathways in mouse neuro-2a cells[J]. Oxidative Medicine and Cellular Longevity,2016,2016:9826726.
    [9]
    DUAN Z Z, ZHOU X L, LI Y H, et al. Protection of Momordica charantia polysaccharide against intracerebral hemorrhage-induced brain injury through JNK3 signaling pathway[J]. Journal of Receptors and Signal Transduction,2015,35(6):523−529. doi: 10.3109/10799893.2014.963871
    [10]
    GONG J J, SUN F M, LI Y H, et al. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway[J]. Neuropharmacology,2015,91:123−134. doi: 10.1016/j.neuropharm.2014.11.020
    [11]
    陶弘景. 名医别录[M]. 北京: 中国中医药出版社, 2013: 38.

    TAO H J. Doctors do not record[M]. Beijing: China Press of Traditional Chinese Medicine, 2013: 38.
    [12]
    韩春杨, 杨明川, 杨孜生, 等. 黄精多糖的提取及其对CCl4致大鼠肝损伤的保护作用[J]. 浙江农业学报,2018,30(4):537−547. [HAN C Y, YANG M C, YANG Z S, et al. Study on extraction of Polygonatum sibiricum polysaccharides and its protective effect on CCl4-induced acute liver injury in rats[J]. Acta Agriculturae Zhejiangensis,2018,30(4):537−547. doi: 10.3969/j.issn.1004-1524.2018.04.03
    [13]
    WANG Y, LIU Y J, LI F E, et al. A Chinese herbal formula shows beneficial effects on comorbid depression and coronary heart disease based on the philosophy of psycho-cardiology[J]. Journal of Herbal Medicine,2020,19:100303. doi: 10.1016/j.hermed.2019.100303
    [14]
    LI L, THAKUR K, LIAO B Y, et al. Antioxidant and antimicrobial potential of polysaccharides sequentially extracted from Polygonatum cyrtonema Hua[J]. International Journal of Biological Macromolecules,2018,114:317−323. doi: 10.1016/j.ijbiomac.2018.03.121
    [15]
    成威, 李友元, 邓洪波, 等. 黄精多糖对阿尔茨海默病小鼠海马CA1区突触界面的影响[J]. 临床与病理杂志,2014,34(4):400−404. [CHENG W, LI Y Y, DENG H B, et al. Effect of polygona-polysaccharose on the synaptic interface in hippocampal CAI region of Alzheimer’s mice[J]. Journal of Clinical and Pathological Research,2014,34(4):400−404. doi: 10.3978/j.issn.2095-6959.2014.04.016
    [16]
    唐伟, 王威, 谭丽阳, 等. 黄精多糖对慢性脑缺血大鼠学习记忆能力及脑组织超微结构影响[J]. 中国中医药科技,2017,24(2):173−176. [TANG W, WANG W, TAN L Y, et al. Effects of Polygonatum polysaccharides on learning and memory and ultrastructure changes of brain tissue in rats with chronic cerebral ischemia[J]. Chinese Journal of Traditional Medical Science and Technology,2017,24(2):173−176.
    [17]
    陆连第, 段伟松, 赵玉, 等. 黄精多糖对血管性痴呆模型大鼠干预作用的实验研究[J]. 中药材,2018,41(9):2212−2215. [LU L D, DUAN W S, ZHAO Y, et al. Intervention effects of Polygonatum polysaccharides in rats model of vascular dementia[J]. Journal of Chinese Medicinal Materials,2018,41(9):2212−2215.
    [18]
    黄红, 陈碧清, 姜宁, 等. 鲜天麻对睡眠干扰诱导小鼠学习记忆障碍的改善作用[J]. 中草药,2020,51(9):2509−2516. [HUANG H, CHEN B Q, JIANG N, et al. Effect of fresh Gastrodia elata Blume on learning and memory impairment induced by sleep disturbance in mice[J]. Chinese Herbal Medicine,2020,51(9):2509−2516.
    [19]
    ZHANG L M, QIU Z K, ZHAO N, et al. Anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in animal models of post-traumatic stress disorder[J]. International Journal of Neuropsychopharmacology,2014,17(10):1659−1669. doi: 10.1017/S1461145714000479
    [20]
    WANG S G, SU G W, ZHANG Q, et al. Walnut (Juglans regia) peptides reverse sleep deprivation-induced memory impairment in rat via alleviating oxidative stress[J]. Journal of Agricultural and Food Chemistry,2018,66(40):10617−10627. doi: 10.1021/acs.jafc.8b03884
    [21]
    SHAH H, SHIN A C. Meal patterns after bariatric surgery in mice and rats[J]. Appetite,2020,146:104340. doi: 10.1016/j.appet.2019.104340
    [22]
    CHEN D, WANG J, XING Y, et al. Behavioral assessment of post-stroke depression and anxiety in rodents[J]. Brain Hemorrhages,2020,1(2):105−111. doi: 10.1016/j.hest.2020.02.004
    [23]
    YELITHAO K, SURAYOT U, LEE J H, et al. RAW264.7 cell activating glucomannans extracted from rhizome of Polygonatum sibiricum[J]. Preventive Nutrition and Food Science,2016,21(3):245−254. doi: 10.3746/pnf.2016.21.3.245
    [24]
    ZHAO P, ZHAO C C, LI X, et al. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology[J]. Journal of Ethnopharmacology,2018,214:274−291. doi: 10.1016/j.jep.2017.12.006
    [25]
    CUI X W, WANG S Y, CAO H, et al. A review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides[J]. Molecules,2018,23(5):1170. doi: 10.3390/molecules23051170
    [26]
    UNAL G, CANBEYLI R. Psychomotor retardation in depression: A critical measure of the forced swim test[J]. Behavioural Brain Research,2019,372:112047. doi: 10.1016/j.bbr.2019.112047
    [27]
    SUMAYA I C, BAILEY D, CATLETT S L. Differential effects of a short-term high-fat diet in an animal model of depression in rats treated with the 5-HT3 receptor antagonist, ondansetron, the 5-HT3 receptor agonist, 2-methyl-5-HT, and the SSRI, fluoxetine[J]. Pharmacology Biochemistry and Behavior,2016,144:78−84. doi: 10.1016/j.pbb.2016.03.005
    [28]
    DUVAL F, MOKRANI M, ERB A, et al. Thyroid axis activity and dopamine function in depression[J]. Psychoneuroendocrinology,2021,128:105219. doi: 10.1016/j.psyneuen.2021.105219
    [29]
    COLLO G, PICH E M. A human translational model based on neuroplasticity for pharmacological agents potentially effective in treatment-resistant depression: Focus on dopaminergic system[J]. Neural Regeneration Research,2020,15(6):1027−1029. doi: 10.4103/1673-5374.270305
    [30]
    ROBERTS C, SAHAKIAN B J, ROBBINS T W. Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition[J]. Neuroscience & Biobehavioral Reviews,2020,119:138−167.
    [31]
    RAISON C L, CAPURON L, MILLER A H. Cytokines sing the blues: Inflammation and the pathogenesis of depression[J]. Trends in Immunology,2006,27(1):24−31. doi: 10.1016/j.it.2005.11.006
    [32]
    GOLD P W. Endocrine factors in key structural and intracellular changes in depression[J]. Trends in Endocrinology & Metabolism, 2021, 32(4): 212−223.
    [33]
    RENGASAMY M, MARSLAND A, MCCLAIN L, et al. Longitudinal relationships of cytokines, depression and anhedonia in depressed adolescents[J]. Brain, Behavior, and Immunity,2021,91:74−80. doi: 10.1016/j.bbi.2020.09.004
    [34]
    TAUIL C B, DA ROCHA LIMA A D, FERRARI B B, et al. Depression and anxiety in patients with multiple sclerosis treated with interferon-beta or fingolimod: Role of indoleamine 2, 3-dioxygenase and pro-inflammatory cytokines[J]. Brain, Behavior, & Immunity-Health,2020,9:100162.
    [35]
    陈娟, 李友元, 田伟, 等. 黄精多糖对帕金森病大鼠脑组织中PPAR-γ表达的影响[J]. 现代生物医学进展,2010,10(5):814−817. [CHEN J, LI Y Y, TIAN W, et al. Effect of polygona-polysaccharose (PP) on expression of PPAR-γ in brain tissue of rats with Parkinson disease[J]. Progress in Modern Biomedicine,2010,10(5):814−817.
    [36]
    WOLF W A, YOUDIM M B H, KUHN D M. Does brain 5-HIAA indicate serotonin release or monoamine oxidase activity?[J]. European Journal of Pharmacology,1985,109(3):381−387. doi: 10.1016/0014-2999(85)90399-1
    [37]
    ZHANG M D, TAO X, PAN R L, et al. Antidepressant-like effects of cajaninstilbene acid and its related mechanisms in mice[J]. Fitoterapia,2020,141:104450. doi: 10.1016/j.fitote.2019.104450
    [38]
    LI C C, JIANG N, GAN L, et al. Peripheral and cerebral abnormalities of the tryptophan metabolism in the depression-like rats induced by chronic unpredicted mild stress[J]. Neurochemistry International,2020,138:104771. doi: 10.1016/j.neuint.2020.104771
  • Related Articles

    [1]ZHANG Haojing, XU Zhengang, LI Yongxian, CHEN Tiange, HE Tianyi, XU Min, TUO Xiaojun, LIU Lei, ZHAO Xihong. Effect of Degree of Milling on the Cooking Properties and Edible Quality of the Sea Rice[J]. Science and Technology of Food Industry, 2024, 45(23): 104-110. DOI: 10.13386/j.issn1002-0306.2023120044
    [2]LU Huiqin, HUANG Yuyu, REN Xiaopu, NIU Xiyue, LAN Daoliang, WANG Yuqi, WANG Linlin. Effects of Curing Time on the Edible Quality and Oxidation Characteristics of Complex Low-sodium Yak Meat[J]. Science and Technology of Food Industry, 2024, 45(15): 76-84. DOI: 10.13386/j.issn1002-0306.2023080191
    [3]ZHANG Bei, LU Tian, LEI Qing, ZHANG Xue, DAO Xiaofang, WANG Linlin, KALBINUR Kadir, CHEN Yu. Comparison of the Effects of Different Edible Fungi on Edible Quality of Yak Meat Balls During Storage[J]. Science and Technology of Food Industry, 2023, 44(16): 367-376. DOI: 10.13386/j.issn1002-0306.2022090203
    [4]HE Qi, DONG Yi, DENG Sha, XIANG Yan, HE Peijun, HE Qiang. Effects of NaCl on Edible Quality of Salted Rabbit Meat[J]. Science and Technology of Food Industry, 2022, 43(15): 115-122. DOI: 10.13386/j.issn1002-0306.2021110065
    [5]ZHANG Ling-wen, WANG Xue-fei, JV Xing, JI Hong-fang, WANG Fang, WANG Hua, MA Han-jun. Effect of Glutenin-Gliadin Ratio on the Edible Quality of Crusts from Deep-Fried Battered Pork Slices[J]. Science and Technology of Food Industry, 2020, 41(9): 14-19. DOI: 10.13386/j.issn1002-0306.2020.09.003
    [6]SHEN Ming-cong, ZHOU Ming-yang, SUN Yang-ying, TANG Xiao, PAN Dao-dong, CAO Jin-xuan. Effects of Different Heating Methods on Edible Quality of Salted Goose[J]. Science and Technology of Food Industry, 2019, 40(11): 63-69,78. DOI: 10.13386/j.issn1002-0306.2019.11.012
    [7]WANG Xiao-ping, LEI Ji, TANG Shi, LU Yu-shuang, WANG Zu-wen. Improving the edible quality of the bran by yeast fermentation[J]. Science and Technology of Food Industry, 2016, (10): 231-235. DOI: 10.13386/j.issn1002-0306.2016.10.038
    [8]LI Ming- juan, YOU Xiang-rong, ZHANG Ya-yuan, LIAO Fen, SUN Jian, QIN Gang, WEI Ping, LI Zhi-chun, YANG Mei, XIE Xiao-qiang. Effects of the sugarcane leaves biochar powder on the sensory quality and texture characteristics of biscuits[J]. Science and Technology of Food Industry, 2016, (05): 98-103. DOI: 10.13386/j.issn1002-0306.2016.05.011
    [9]LI Zhen-zi, YANG Ju-tian, SONG Qiao, ZANG Rong-xin. Edible quality of Lanzhou fat-tailed sheep in different gender and anatomical regions[J]. Science and Technology of Food Industry, 2014, (17): 354-357. DOI: 10.13386/j.issn1002-0306.2014.17.071
    [10]ZHANG Ling-wen, JI Hong-fang, YANG Ming-duo, MA Han-jun, ZHANG Fan. Effect of rice flour on edible quality of crusts from deep-fat-fried battered food[J]. Science and Technology of Food Industry, 2014, (09): 87-90. DOI: 10.13386/j.issn1002-0306.2014.09.009
  • Cited by

    Periodical cited type(13)

    1. 赖多,王德林,邵雪花,秦健,庄庆礼,肖维强. 余甘子果实斑点病菌LAMP可视化检测方法的建立. 西北农林科技大学学报(自然科学版). 2025(01): 69-79+90 .
    2. 吴紫彬,邹知静,刘亚男,吴雪辉. 基于模糊数学和响应面法优化余甘子果汁饮料生产工艺. 粮食与油脂. 2024(02): 100-105 .
    3. 姜加良,王雪丽,韩颖,张馨延. 响应面法优化石榴皮百香果果皮复合饮料发酵工艺及抗疲劳功能评价. 中国食品添加剂. 2024(03): 220-228 .
    4. 赖多,王德林,周国昌,邵雪花,秦健,庄庆礼,蔡时可,肖维强. 余甘子斑点病病原菌鉴定、生物学特性及防治药剂筛选. 南方农业学报. 2024(02): 479-488 .
    5. 唐勇琛,张洪平,毛桂福,樊玲凤,杨玉竹,张亚洲. 心脉舒一号口服液质量标准提升研究. 中国药业. 2024(14): 80-83 .
    6. 朱静,陈顺心,张一鸣,陈亚蓝. 不同酵母对圣女果果酒品质及挥发性风味物质的影响. 中国酿造. 2024(09): 177-184 .
    7. 刘一鸣,张运运. 酸枣果肉苦荞复合运动饮料的研制及其抗疲劳活性研究. 食品科技. 2024(12): 79-88 .
    8. 王紫菱,劳嘉,钟灿,贺炜,张水寒,金剑. 食疗中草药乳酸菌发酵与生物转化研究进展与展望. 食品与发酵工业. 2023(08): 318-324+334 .
    9. 蔡宁,于傲,佟永清. 百香果皮酵素饮料研制及对运动耐力的影响. 食品与发酵工业. 2023(10): 230-236 .
    10. 陈来凤,倪琳钰,邓成林,罗亚楠,李海燕,丰贵江,林秋叶. 乳酸菌发酵天麻口服液工艺优化. 食品工业科技. 2023(15): 193-202 . 本站查看
    11. 权树琳,张班,徐瑞豪,王慧慧. 灰树花子实体多糖的结构特性分析及提高小鼠的运动耐力. 现代食品科技. 2023(10): 25-34 .
    12. 雷露,余波,周景瑞,王川南,吴天祥. 天麻、苦荞醇提物对灰树花胞外多糖合成酶类的影响及天麻苦荞醇提物复配发酵液的抗疲劳作用. 现代食品科技. 2022(10): 33-39 .
    13. 李春峰,索文涛. β-环糊精-高良姜素复合物的制备及对小鼠运动疲劳的影响. 中国食品添加剂. 2022(12): 154-161 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (556) PDF downloads (76) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return