WEI Zhen, SONG Hongbo, AN Fengping, et al. Protective Effects and Mechanism of Polysaccharide from Polygonati rhizoma on Behavioral Despair Mice[J]. Science and Technology of Food Industry, 2022, 43(6): 351−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060137.
Citation: WEI Zhen, SONG Hongbo, AN Fengping, et al. Protective Effects and Mechanism of Polysaccharide from Polygonati rhizoma on Behavioral Despair Mice[J]. Science and Technology of Food Industry, 2022, 43(6): 351−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060137.

Protective Effects and Mechanism of Polysaccharide from Polygonati rhizoma on Behavioral Despair Mice

More Information
  • Received Date: June 16, 2021
  • Available Online: January 16, 2022
  • Objective: To study the protective effects of polysaccharide from Polygonati rhizoma (PSP) on acute behavioral despair mice and the underlying mechanisms. Methods: A total of 60 ICR mice were randomly divided into the control group, the paroxetine group (10 mg/kg), PSP-low group (100 mg/kg), PSP-medium group (200 mg/kg), and PSP-high group (400 mg/kg). After 3 weeks of administration, the effect of PSP on the body weight and locomotor activity of mice was investigated by body weight and open field. The tail suspension and the forced swimming test were conducted to evaluate the antidepressant effect of PSP. In addition, 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA) levels in cortex, tumor necrosis factor (TNF-α), interleukin-10 (IL-10) levels in serum as well as tryptophan (TRP), 5-hydroxyindolacetic acid (5-HIAA) and 3-hydroxycaninuric acid (3-HK) contents in hippocampus of mice were evaluated to explore the molecular mechanism of antidepressant effect. Results: The PSP administration remarkably shortened the immobility time of the behavioral despair model mice both in tail suspension test and forced swimming test (P<0.05), showing the antidepressant activity. At the same time, PSP had no influence on the body weight and locomotor activity of mice (P>0.05). Moreover, PSP (200 and 400 mg/kg) significantly elevated the levels of 5-HT, DA and NE in cortex (P<0.05), decreased the TNF-α and IL-10 release in serum (P<0.05), as well as inhibited the levels of TRP and 3-HK (P<0.05) in hippocampus of mice compared to those of control group. Conclusion: PSP (200 and 400 mg/kg) exerted remarkable antidepressant activity in behavioral despair mice probably by promoting monoamine neurotransmitter release, inhibiting inflammatory cytokines levels, and regulating tryptophan metabolism.
  • [1]
    ROGERS A H, ZVOLENSKY M J, DITRE J W, et al. Association of opioid misuse with anxiety and depression: A systematic review of the literature[J]. Clinical Psychology Review,2021,84:101978. doi: 10.1016/j.cpr.2021.101978
    [2]
    WANG S, LERI F, RIZVI S J. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2021,110:110289. doi: 10.1016/j.pnpbp.2021.110289
    [3]
    MORENO-AGOSTINO D, WU Y T, DASKALOPOULOU C, et al. Global trends in the prevalence and incidence of depression: A systematic review and meta-analysis[J]. Journal of Affective Disorders,2021,281:235−243. doi: 10.1016/j.jad.2020.12.035
    [4]
    WONG V W, HO F Y, SHI N, et al. Lifestyle medicine for depression: A meta-analysis of randomized controlled trials[J]. Journal of Affective Disorders,2021,284:203−216. doi: 10.1016/j.jad.2021.02.012
    [5]
    LA CHANCE L R, RAMSEY D. Antidepressant foods: An evidence-based nutrient profiling system for depression[J]. World Journal of Psychiatry,2018,8(3):97−104. doi: 10.5498/wjp.v8.i3.97
    [6]
    WONG K H, KANAGASABAPATHY G, BAKAR R, et al. Restoration of sensory dysfunction following peripheral nerve injury by the polysaccharide from culinary and medicinal mushroom, Hericium erinaceus (Bull.: Fr. ) Pers. through its neuroregenerative action[J]. Food Science and Technology (Campinas), 2015, 35(4): 712−721.
    [7]
    XIANG Q, ZHOU W Y, HU W X, et al. Neuroprotective effects of Rhizoma dioscoreae polysaccharides against neuronal apoptosis induced by in vitro hypoxia[J]. Experimental and Therapeutic Medicine,2015,10(6):2063−2070. doi: 10.3892/etm.2015.2819
    [8]
    ZHAO W, PAN X, LI T, et al. Lycium barbarum polysaccharides protect against trimethyltin chloride-induced apoptosis via sonic hedgehog and PI3K/Akt signaling pathways in mouse neuro-2a cells[J]. Oxidative Medicine and Cellular Longevity,2016,2016:9826726.
    [9]
    DUAN Z Z, ZHOU X L, LI Y H, et al. Protection of Momordica charantia polysaccharide against intracerebral hemorrhage-induced brain injury through JNK3 signaling pathway[J]. Journal of Receptors and Signal Transduction,2015,35(6):523−529. doi: 10.3109/10799893.2014.963871
    [10]
    GONG J J, SUN F M, LI Y H, et al. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway[J]. Neuropharmacology,2015,91:123−134. doi: 10.1016/j.neuropharm.2014.11.020
    [11]
    陶弘景. 名医别录[M]. 北京: 中国中医药出版社, 2013: 38.

    TAO H J. Doctors do not record[M]. Beijing: China Press of Traditional Chinese Medicine, 2013: 38.
    [12]
    韩春杨, 杨明川, 杨孜生, 等. 黄精多糖的提取及其对CCl4致大鼠肝损伤的保护作用[J]. 浙江农业学报,2018,30(4):537−547. [HAN C Y, YANG M C, YANG Z S, et al. Study on extraction of Polygonatum sibiricum polysaccharides and its protective effect on CCl4-induced acute liver injury in rats[J]. Acta Agriculturae Zhejiangensis,2018,30(4):537−547. doi: 10.3969/j.issn.1004-1524.2018.04.03
    [13]
    WANG Y, LIU Y J, LI F E, et al. A Chinese herbal formula shows beneficial effects on comorbid depression and coronary heart disease based on the philosophy of psycho-cardiology[J]. Journal of Herbal Medicine,2020,19:100303. doi: 10.1016/j.hermed.2019.100303
    [14]
    LI L, THAKUR K, LIAO B Y, et al. Antioxidant and antimicrobial potential of polysaccharides sequentially extracted from Polygonatum cyrtonema Hua[J]. International Journal of Biological Macromolecules,2018,114:317−323. doi: 10.1016/j.ijbiomac.2018.03.121
    [15]
    成威, 李友元, 邓洪波, 等. 黄精多糖对阿尔茨海默病小鼠海马CA1区突触界面的影响[J]. 临床与病理杂志,2014,34(4):400−404. [CHENG W, LI Y Y, DENG H B, et al. Effect of polygona-polysaccharose on the synaptic interface in hippocampal CAI region of Alzheimer’s mice[J]. Journal of Clinical and Pathological Research,2014,34(4):400−404. doi: 10.3978/j.issn.2095-6959.2014.04.016
    [16]
    唐伟, 王威, 谭丽阳, 等. 黄精多糖对慢性脑缺血大鼠学习记忆能力及脑组织超微结构影响[J]. 中国中医药科技,2017,24(2):173−176. [TANG W, WANG W, TAN L Y, et al. Effects of Polygonatum polysaccharides on learning and memory and ultrastructure changes of brain tissue in rats with chronic cerebral ischemia[J]. Chinese Journal of Traditional Medical Science and Technology,2017,24(2):173−176.
    [17]
    陆连第, 段伟松, 赵玉, 等. 黄精多糖对血管性痴呆模型大鼠干预作用的实验研究[J]. 中药材,2018,41(9):2212−2215. [LU L D, DUAN W S, ZHAO Y, et al. Intervention effects of Polygonatum polysaccharides in rats model of vascular dementia[J]. Journal of Chinese Medicinal Materials,2018,41(9):2212−2215.
    [18]
    黄红, 陈碧清, 姜宁, 等. 鲜天麻对睡眠干扰诱导小鼠学习记忆障碍的改善作用[J]. 中草药,2020,51(9):2509−2516. [HUANG H, CHEN B Q, JIANG N, et al. Effect of fresh Gastrodia elata Blume on learning and memory impairment induced by sleep disturbance in mice[J]. Chinese Herbal Medicine,2020,51(9):2509−2516.
    [19]
    ZHANG L M, QIU Z K, ZHAO N, et al. Anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in animal models of post-traumatic stress disorder[J]. International Journal of Neuropsychopharmacology,2014,17(10):1659−1669. doi: 10.1017/S1461145714000479
    [20]
    WANG S G, SU G W, ZHANG Q, et al. Walnut (Juglans regia) peptides reverse sleep deprivation-induced memory impairment in rat via alleviating oxidative stress[J]. Journal of Agricultural and Food Chemistry,2018,66(40):10617−10627. doi: 10.1021/acs.jafc.8b03884
    [21]
    SHAH H, SHIN A C. Meal patterns after bariatric surgery in mice and rats[J]. Appetite,2020,146:104340. doi: 10.1016/j.appet.2019.104340
    [22]
    CHEN D, WANG J, XING Y, et al. Behavioral assessment of post-stroke depression and anxiety in rodents[J]. Brain Hemorrhages,2020,1(2):105−111. doi: 10.1016/j.hest.2020.02.004
    [23]
    YELITHAO K, SURAYOT U, LEE J H, et al. RAW264.7 cell activating glucomannans extracted from rhizome of Polygonatum sibiricum[J]. Preventive Nutrition and Food Science,2016,21(3):245−254. doi: 10.3746/pnf.2016.21.3.245
    [24]
    ZHAO P, ZHAO C C, LI X, et al. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology[J]. Journal of Ethnopharmacology,2018,214:274−291. doi: 10.1016/j.jep.2017.12.006
    [25]
    CUI X W, WANG S Y, CAO H, et al. A review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides[J]. Molecules,2018,23(5):1170. doi: 10.3390/molecules23051170
    [26]
    UNAL G, CANBEYLI R. Psychomotor retardation in depression: A critical measure of the forced swim test[J]. Behavioural Brain Research,2019,372:112047. doi: 10.1016/j.bbr.2019.112047
    [27]
    SUMAYA I C, BAILEY D, CATLETT S L. Differential effects of a short-term high-fat diet in an animal model of depression in rats treated with the 5-HT3 receptor antagonist, ondansetron, the 5-HT3 receptor agonist, 2-methyl-5-HT, and the SSRI, fluoxetine[J]. Pharmacology Biochemistry and Behavior,2016,144:78−84. doi: 10.1016/j.pbb.2016.03.005
    [28]
    DUVAL F, MOKRANI M, ERB A, et al. Thyroid axis activity and dopamine function in depression[J]. Psychoneuroendocrinology,2021,128:105219. doi: 10.1016/j.psyneuen.2021.105219
    [29]
    COLLO G, PICH E M. A human translational model based on neuroplasticity for pharmacological agents potentially effective in treatment-resistant depression: Focus on dopaminergic system[J]. Neural Regeneration Research,2020,15(6):1027−1029. doi: 10.4103/1673-5374.270305
    [30]
    ROBERTS C, SAHAKIAN B J, ROBBINS T W. Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition[J]. Neuroscience & Biobehavioral Reviews,2020,119:138−167.
    [31]
    RAISON C L, CAPURON L, MILLER A H. Cytokines sing the blues: Inflammation and the pathogenesis of depression[J]. Trends in Immunology,2006,27(1):24−31. doi: 10.1016/j.it.2005.11.006
    [32]
    GOLD P W. Endocrine factors in key structural and intracellular changes in depression[J]. Trends in Endocrinology & Metabolism, 2021, 32(4): 212−223.
    [33]
    RENGASAMY M, MARSLAND A, MCCLAIN L, et al. Longitudinal relationships of cytokines, depression and anhedonia in depressed adolescents[J]. Brain, Behavior, and Immunity,2021,91:74−80. doi: 10.1016/j.bbi.2020.09.004
    [34]
    TAUIL C B, DA ROCHA LIMA A D, FERRARI B B, et al. Depression and anxiety in patients with multiple sclerosis treated with interferon-beta or fingolimod: Role of indoleamine 2, 3-dioxygenase and pro-inflammatory cytokines[J]. Brain, Behavior, & Immunity-Health,2020,9:100162.
    [35]
    陈娟, 李友元, 田伟, 等. 黄精多糖对帕金森病大鼠脑组织中PPAR-γ表达的影响[J]. 现代生物医学进展,2010,10(5):814−817. [CHEN J, LI Y Y, TIAN W, et al. Effect of polygona-polysaccharose (PP) on expression of PPAR-γ in brain tissue of rats with Parkinson disease[J]. Progress in Modern Biomedicine,2010,10(5):814−817.
    [36]
    WOLF W A, YOUDIM M B H, KUHN D M. Does brain 5-HIAA indicate serotonin release or monoamine oxidase activity?[J]. European Journal of Pharmacology,1985,109(3):381−387. doi: 10.1016/0014-2999(85)90399-1
    [37]
    ZHANG M D, TAO X, PAN R L, et al. Antidepressant-like effects of cajaninstilbene acid and its related mechanisms in mice[J]. Fitoterapia,2020,141:104450. doi: 10.1016/j.fitote.2019.104450
    [38]
    LI C C, JIANG N, GAN L, et al. Peripheral and cerebral abnormalities of the tryptophan metabolism in the depression-like rats induced by chronic unpredicted mild stress[J]. Neurochemistry International,2020,138:104771. doi: 10.1016/j.neuint.2020.104771
  • Cited by

    Periodical cited type(11)

    1. 张新圻,朱顺华,钟秀来,罗庆,熊爱生,谭国飞. 不同水芹种质资源的形态、花青素含量及相关基因表达量分析. 贵州师范大学学报(自然科学版). 2025(02): 105-113 .
    2. 张博,王雨婷,刘洁,李加会,吴鸿飞. 经典药对“瓜蒌-薤白”治疗痰瘀互结心血管疾病的血清代谢组学研究. 中国中药杂志. 2024(01): 232-242 .
    3. 罗庆,张新圻,李梦瑶,朱顺华,熊爱生,谭国飞. 药食同源植物水芹的研究进展. 植物遗传资源学报. 2024(08): 1221-1233 .
    4. 邢啸林,陈丹,况勇,徐文娟,黄然,甘德芳. 水芹SSR分子标记开发与遗传多样性分析. 江苏农业学报. 2024(07): 1285-1296 .
    5. 李冬霞,张凡,王洧,南建. 水芹贮藏保鲜和开发利用研究进展. 农产品加工. 2023(02): 66-69+72 .
    6. 朱顺华,罗庆,李梦瑶,孟平红,钟秀来,王堃,陈志峰,谭国飞,熊爱生. 水芹雄性不育材料的鉴定及营养品质分析. 植物科学学报. 2023(03): 343-348 .
    7. 倪子怡,许海,詹旭,朱广伟,程新良,胡亮,王裕成,郑文婷. 刈割对千岛湖生态浮床植物生长与氮素净化效率的影响. 环境工程学报. 2023(08): 2494-2504 .
    8. 刘杰,刘吉祥,常雅军,陈婷,刘晓静,孙林鹤,姚东瑞. LC-SIM-Orbitraq测定无土栽培水芹不同器官中有机酸含量. 中国瓜菜. 2023(09): 80-86 .
    9. 王丹,万娜,黄金妮,陈敏妮,杨兹伟,汤祝华. 多壁碳纳米管净化-色谱质谱技术测定水芹中多农药残留. 食品科技. 2023(09): 276-284 .
    10. 刘吉祥,杜凤凤,孙林鹤,王巍,赵慧君,姚东瑞,常雅军. 无土栽培水芹不同器官的氨基酸特征及其资源化利用潜力分析. 中国蔬菜. 2022(07): 34-44 .
    11. 季青霞,陈伟,毕艳红,赵祥杰,白青云,王朝宇. 超声波辅助提取水芹中黄酮类化合物的工艺研究. 包装与食品机械. 2022(06): 25-30+38 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (557) PDF downloads (76) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return