FU Min, ZHANG Xuguang, YANG Liu, et al. Astaxanthin Regulates ROS-mediated Autophagy to Prolong Lifespan of Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2022, 43(4): 373−378. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060072.
Citation: FU Min, ZHANG Xuguang, YANG Liu, et al. Astaxanthin Regulates ROS-mediated Autophagy to Prolong Lifespan of Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2022, 43(4): 373−378. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060072.

Astaxanthin Regulates ROS-mediated Autophagy to Prolong Lifespan of Caenorhabditis elegans

More Information
  • Received Date: June 07, 2021
  • Available Online: December 15, 2021
  • The present study was carried on assess the lifespan extension of Caenorhabditis elegans (C. elegans) by astaxanthin (AST) and its related molecular mechanisms. The effect of AST on the lifespan of wild-type (WT) nematodes was observed, the relative expression of antioxidant (sod-3, ctl-1) and autophagy-related genes (bec-1, lgg-1) in WT nematodes was detected by qRT-PCR, the effect of AST on ROS levels in WT nematodes was detected by DCFH-DA fluorescent probe, the effect of AST on LGG-1::GFP fluorescent protein expression in DA2123 nematodes was detected by Western blot, and after oxidative stress was induced by juglone, the mRNA expression levels of bec-1 and lgg-1 in WT nematodes under oxidative stress were detected by qRT-PCR, and the effect of AST on the lifespan of C. elegans under oxidative stress was further examined. The results showed that AST could prolong the lifespan of WT nematodes, up-regulate the mRNA expression levels of sod-3, ctl-1, bec-1, and lgg-1 genes, scavenge excessive ROS in nematodes, up-regulate autophagy levels and prolong nematode lifespan under oxidative stress. Therefore, AST might prolong nematode lifespan by regulating ROS levels in C. elegans and then regulating autophagy.
  • [1]
    KIM D K, KIM T H, Lee S J. Mechanisms of aging-related proteinopathies in Caenorhabditis elegans[J]. Experimental & Molecular medicine,2016,48(10):e263.
    [2]
    SCHERZ-SHOUVAL R, ELAZAR Z. Regulation of autophagy by ROS: physiology and pathology[J]. Trends in Biochemical sciences,2011,36(1):30−38. doi: 10.1016/j.tibs.2010.07.007
    [3]
    BETTIO L E B, RAJENDRAN L, GIL-MOHAPEL J. The effects of aging in the hippocampus and cognitive decline[J]. Neuroscience and Biobehavioral Reviews,2017,79:66−86. doi: 10.1016/j.neubiorev.2017.04.030
    [4]
    LI L, TAN J, MIAO Y, et al. ROS and autophagy: Interactions and molecular regulatory mechanisms[J]. Cellular and Molecular Neurobiology,2015,35(5):615−621. doi: 10.1007/s10571-015-0166-x
    [5]
    WONG S Q, KUMAR A V, MILLS J, et al. Autophagy in aging and longevity[J]. Human Genetics,2020,139(3):277−290. doi: 10.1007/s00439-019-02031-7
    [6]
    LIPINSKI M M, ZHENG B, LU T, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(32):14164−9. doi: 10.1073/pnas.1009485107
    [7]
    NI Y, WU T, YANG L, et al. Protective effects of astaxanthin on a combination of D-galactose and jet lag-induced aging model in mice[J]. Endocrine Journal,2018,65(5):569−578. doi: 10.1507/endocrj.EJ17-0500
    [8]
    SAINI R K, KEUM Y S. Progress in microbial carotenoids production[J]. Indian journal of Microbiology,2017,57(1):129−130. doi: 10.1007/s12088-016-0637-x
    [9]
    YAZAKI K, YOSHIKOSHI C, OSHIRO S, et al. Supplemental cellular protection by a carotenoid extends lifespan via Ins/IGF-1 signaling in Caenorhabditis elegans[J]. Oxidative Medicine and Cellular longevity,2011,2011:596240.
    [10]
    LIU X, LUO Q, CAO Y, et al. Mechanism of different stereoisomeric astaxanthin in resistance to oxidative stress in Caenorhabditis elegans[J]. Journal of Food Science,2016,81(9):H2280−H2287. doi: 10.1111/1750-3841.13417
    [11]
    KIM S H, KIM H. Astaxanthin modulation of signaling pathways that regulate autophagy[J]. Marine drugs,2019,17(10):546. doi: 10.3390/md17100546
    [12]
    FU M, ZHANG X, ZHANG X, et al. Autophagy plays a role in the prolongation of the life span of Caenorhabditis elegans by astaxanthin[J]. Rejuvenation Research,2021,24(3):198−205. doi: 10.1089/rej.2020.2355
    [13]
    LUO Z, XU X, SHO T, et al. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation[J]. American Journal of Physiology Cell Physiology,2019,316(2):C198−c209. doi: 10.1152/ajpcell.00256.2018
    [14]
    KOBET R A, PAN X, ZHANG B, et al. Caenorhabditis elegans: A model system for anti-cancer drug discovery and therapeutic target identification[J]. Biomolecules & Therapeutics,2014,22(5):371−383.
    [15]
    GRUBER J, TANG S Y, HALLIWELL B. Evidence for a trade-off between survival and fitness caused by resveratrol treatment of Caenorhabditis elegans[J]. Annals of the New York Academy of Sciences,2007,1100(1):530−542. doi: 10.1196/annals.1395.059
    [16]
    WANG Z W, SAIFEE O, NONET M L, et al. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction[J]. Neuron,2001,32(5):867−881. doi: 10.1016/S0896-6273(01)00522-0
    [17]
    SCHIAVI A, TORGOVNICK A, KELL A, et al. Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans[J]. Experimental Gerontology,2013,48(2):191−201. doi: 10.1016/j.exger.2012.12.002
    [18]
    LABUSCHAGNE C F, BRENKMAN A B. Current methods in quantifying ROS and oxidative damage in Caenorhabditis elegans and other model organism of aging[J]. Ageing Research Reviews,2013,12(4):918−930. doi: 10.1016/j.arr.2013.09.003
    [19]
    DE CASTRO E, HEGI DE CASTRO S, JOHNSON T E. Isolation of long-lived mutants in Caenorhabditis elegans using selection for resistance to juglone[J]. Free radical Biology & Medicine,2004,37(2):139−145.
    [20]
    王慧, 赵江, 杨胜楠, 等. D-手性肌醇对高糖导致氧化损伤线虫延缓衰老的作用及机制[J]. 食品工业科技,2019,40(2):282−286. [WANG Hui, ZHAO Jiang, YANG Shengnan, et al. Effect and mechanism of D-chiral inositol on delaying aging of nematodes with oxidative damage induced by high glucose[J]. Food Industry Technology,2019,40(2):282−286.
    [21]
    罗卿心, 刘晓娟, 曹庸, 等. 虾青素对秀丽隐杆线虫衰老的影响及其机制的初步研究[J]. 现代食品科技,2015,31(9):56−60. [LUO Qixin, LIU Xiaojuan, CAO Yong, et al. Effect of astaxanthin on senescence of caenorhabditis elegans and its mechanism[J]. Modern Food Technology,2015,31(9):56−60.
    [22]
    罗婧, 沈紫龙, 任建武. 虾青素对秀丽隐杆线虫衰老的改善作用及机制研究[J]. 食品工业科技,2017,38(22):22−25, 30. [ LUO JING, SHEN ZILONG, REN JIANWU. Study on the effect and mechanism of astaxanthin on the aging of Caenorhabditis elegans[J]. Food Industry Science and Technology,2017,38(22):22−25, 30.
    [23]
    WU W, WANG X, XIANG Q, et al. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels[J]. Food & Function,2014,5(1):158−166.
    [24]
    SORRENTI V, DAVINELLI S, SCAPAGNINI G, et al. Astaxanthin as a putative geroprotector: molecular basis and focus on brain aging [J]. Marine Drugs, 2020, 18(7).
    [25]
    EL-BAZ F K, HUSSEIN R A, ABDEL JALEEL G A R, et al. Astaxanthin-rich haematococcus pluvialis algal hepatic modulation in D-galactose-induced aging in rats: Role of Nrf2[J]. Advanced Pharmaceutical Bulletin,2018,8(3):523−528. doi: 10.15171/apb.2018.061
    [26]
    廖忻, 陈文莹, 李逸舟, 等. 齐墩果酸拮抗赭曲霉毒素A诱导的HEK293T细胞自噬性死亡[J]. 食品工业科技,2019,40(3):286−289, 295. [LIAO XIN, CHEN WENYING, LI YIZHOU, et al. Oleanolic acid antagonizes ochratoxin A-induced autophagic death of HEK293T cells[J]. Food Industry Technology,2019,40(3):286−289, 295.
    [27]
    LAPIERRE L R, DE MAGALHAES FILHO C D, MCQUARY P R, et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans[J]. Nature Communications,2013,4:2267. doi: 10.1038/ncomms3267
    [28]
    LAPIERRE L R, KUMSTA C, SANDRI M, et al. Transcriptional and epigenetic regulation of autophagy in aging[J]. Autophagy,2015,11(6):867−880. doi: 10.1080/15548627.2015.1034410
    [29]
    REN J, ZHANG Y. Targeting autophagy in aging and aging-related cardiovascular diseases[J]. Trends in Pharmacological Sciences,2018,39(12):1064−1076. doi: 10.1016/j.tips.2018.10.005
    [30]
    MIZUSHIMA N, LEVINE B. Autophagy in human diseases[J]. The New England Journal of Medicine,2020,383(16):1564−1576. doi: 10.1056/NEJMra2022774
    [31]
    RAVIKUMAR B, SARKAR S, DAVIES J E, et al. Regulation of mammalian autophagy in physiology and pathophysiology[J]. Physiological Reviews,2010,90(4):1383−1435. doi: 10.1152/physrev.00030.2009
    [32]
    CAO Y, KLIONSKY D J. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein[J]. Cell Research,2007,17(10):839−849. doi: 10.1038/cr.2007.78
  • Cited by

    Periodical cited type(4)

    1. 杨宇恒,郑宇航,王文卓,刘芳,张新笑,孙芝兰. 真空包装鸡肉肠产气微生物分离鉴定及胀袋原因探析. 肉类研究. 2024(04): 36-42 .
    2. 胡文静,刘小雪,梁栋,焦凌霞. 肌苷对酸土脂环酸芽孢杆菌生长及生物膜形成的影响. 中国食品学报. 2023(09): 242-251 .
    3. 许育民,任兰兰,张颖,刘亚慧,王海花,张晓静,张晓峰. 抗食源性病原菌细菌素的筛选及特性研究. 食品安全质量检测学报. 2022(04): 1170-1175 .
    4. 刘小杰,舒志成,赵志红,左迪. 调节血脂保健粥的研制. 食品工业科技. 2021(22): 240-245 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (402) PDF downloads (53) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return