Citation: | HAN Rui, WU Qiong, ZHAO Xin, et al. Establishment of Cysteine Detection Method in Food Based on Fluorescent Probe[J]. Science and Technology of Food Industry, 2022, 43(4): 305−311. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060066. |
[1] |
ANTON R, BARLOW S, BOSKOU D, et al. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) to review the toxicology of a number of dyes illegally present in food in the EU[J]. The EFSA Journal,2005,263:1−71.
|
[2] |
CHEN X, ZHOU Y, PENG X, et al. Fluorescent and colorimetric probes for detection of thiols[J]. Chemical Society Reviews,2010,39(6):2120−2135. doi: 10.1039/b925092a
|
[3] |
WU B, XUE T, HE Y. Design of activatable red-emissive assay for cysteine detection in aqueous medium with aggregation induced emission characteristics[J]. Chinese Chemical Letters,2021,32(2):932−937. doi: 10.1016/j.cclet.2020.03.047
|
[4] |
CHANG Y, QIN H, WANG X, et al. Visible and reversible restrict of molecular configuration by copper ion and pyrophosphate[J]. ACS Sensors,2020,5(8):2438−2447. doi: 10.1021/acssensors.0c00619
|
[5] |
YANG M, FAN J, DU J, et al. Small-molecule fluorescent probes for imaging gaseous signaling molecules: Current progress and future implications[J]. Chemical Science,2020,11(20):5127−5141. doi: 10.1039/D0SC01482F
|
[6] |
REN H, HUO F, ZhANG Y, et al. An NIR ESIPT-based fluorescent probe with large stokes shift for specific detection of Cys and its bioimaging in cells and mice[J]. Sensors and Actuators B:Chemical,2020,319:128248. doi: 10.1016/j.snb.2020.128248
|
[7] |
QIAN M, XIA J, ZHANG L, et al. Rationally modifying the dicyanoisophorone fluorophore for sensing cysteine in living cells and mice[J]. Sensors and Actuators B:Chemical,2020,321:128441. doi: 10.1016/j.snb.2020.128441
|
[8] |
LI Y, HE X, HUANG Y, et al. Development of a water-soluble near-infrared fluorescent probe for endogenous cysteine imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,226:117544. doi: 10.1016/j.saa.2019.117544
|
[9] |
JUNG H S, CHEN X, KIM J S, et al. Recent progress in luminescent and colorimetric chemosensors for detection of thiols[J]. Chemical Society Reviews,2013,42(14):6019−6031. doi: 10.1039/c3cs60024f
|
[10] |
YIN C X, XIONG K M, HUO F J, et al. Fluorescent probes with multiple binding sites for the discrimination of Cys, Hcy, and GSH[J]. Angewandte Chemie International Edition,2017,56(43):13188−13198. doi: 10.1002/anie.201704084
|
[11] |
GUO B, PAN X, LIU Y, et al. A reversible water-soluble naphthalimide-based chemosensor for imaging of cellular copper(II) ion and cysteine[J]. Sensors and Actuators B:Chemical,2018,256:632−638. doi: 10.1016/j.snb.2017.09.196
|
[12] |
ZHANG Y, YAO W, LIANG D, et al. Selective detection and quantification of tryptophan and cysteine with pyrenedione as a turn-on fluorescent probe[J]. Sensors and Actuators B:Chemical,2018,259:768−774. doi: 10.1016/j.snb.2017.12.059
|
[13] |
SHARMA P, KUMAR K, KAUR S, et al. Near-IR discriminative detection of H2S and cysteine with 7-nitro-2, 1, 3-benzoxadiazole-perylenediimide conjugate in water, live cells and solid state: mimicking IMP, INH and NOR/OR complimentary logic[J]. Journal of Photochemistry and Photobiology A:Chemistry,2020,388:112151. doi: 10.1016/j.jphotochem.2019.112151
|
[14] |
DAI C G, LIU X L, DU X J, et al. Two-input fluorescent probe for thiols and hydrogen sulfide chemosensing and live cell imaging[J]. ACS Sensors,2016,1(7):888−895. doi: 10.1021/acssensors.6b00291
|
[15] |
XUE H, YU M, HE K, et al. A novel colorimetric and fluorometric probe for biothiols based on MnO2 NFs-Rhodamine B system[J]. Analytica Chimica Acta,2020,1127:39−48. doi: 10.1016/j.aca.2020.06.039
|
[16] |
ZHANG H, LI W, CHEN J, et al. Simultaneous detection of Cys/Hcy and H2S through distinct fluorescence channels[J]. Analytica Chimica Acta,2020,1097:238−244. doi: 10.1016/j.aca.2019.11.029
|
[17] |
WANG J, LI B, ZHAO W, et al. Two-photon near infrared fluorescent turn-on probe toward cysteine and its imaging applications[J]. ACS Sensors,2016,1(7):882−887. doi: 10.1021/acssensors.5b00271
|
[18] |
ZHAO X, JI H, HASRAT K, et al. A mitochondria-targeted single fluorescence probe for separately and continuously visualizing H2S and Cys with multi-response signals[J]. Analytica Chimica Acta,2020,1107:172−182. doi: 10.1016/j.aca.2020.02.017
|
[19] |
DAI Y, ZHENG Y, XUE T, et al. A novel fluorescent probe for rapidly detection cysteine in cystinuria urine, living cancer/normal cells and BALB/c nude mice[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,225:117490. doi: 10.1016/j.saa.2019.117490
|
[20] |
CARDOSO I C S, AMORIM A L, QUEIRÓS C, et al. Microwave-assisted synthesis and spectroscopic properties of 4′-substituted rosamine fluorophores and naphthyl analogues[J]. European Journal of Organic Chemistry,2012,2012(29):5810−5817. doi: 10.1002/ejoc.201200783
|
[21] |
CHENG J, SONG J, NIU H, et al. A new rosamine-based fluorescent chemodosimeter for hydrogen sulfide and its bioimaging in live cells[J]. New Journal Chemistry,2016,40(7):6384−6388. doi: 10.1039/C6NJ00177G
|
[22] |
YANG L, NIU J Y, SUN R, et al. Rosamine with pyronine-pyridinium skeleton: unique mitochondrial targetable structure for fluorescent probes[J]. Analyst,2018,143(8):1813−1819. doi: 10.1039/C7AN02041D
|
[23] |
LEEN V, YUAN P, WANG L, et al. Synthesis of meso-halogenated BODIPYs and access to meso-substituted analogues[J]. Organic Letters,2012,14(24):6150−6153. doi: 10.1021/ol3028225
|
[24] |
LIU Y, LV X, HOU M, et al. Selective fluorescence detection of cysteine over homocysteine and glutathione based on a cysteine-triggered dual michael addition/retro-aza-aldol cascade reaction[J]. Analytical Chemistry,2015,87(22):11475−11483. doi: 10.1021/acs.analchem.5b03286
|
[25] |
YANG L, NIU J Y, SUN R, et al. The pH-influenced PET processes between pyronine and different heterocycles[J]. Organic & Biomolecular Chemistry,2017,15(30):8402−8409.
|
[26] |
CHEN T, PEI X, YUE Y, et al. An enhanced fluorescence sensor for specific detection Cys over Hcy/GSH and its bioimaging in living cells[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,209:223−237. doi: 10.1016/j.saa.2018.10.049
|
[27] |
LIU K, GU H, SUN Y, et al. A novel rosamine-based fluorescent probe for the rapid and selective detection of cysteine in BSA, water, milk, cabbage, radish, apple, and pea[J]. Food Chemistry,2021,356:129658. doi: 10.1016/j.foodchem.2021.129658
|
[28] |
SONG H, ZHANG J, WANG X, et al. A novel “turn-on” fluorescent probe with a large stokes shift for homocysteine and cysteine: Performance in living cells and zebrafish[J]. Sensors and Actuators B:Chemical,2018,259:232−240.
|
[29] |
HE L, YANG X, XU K, et al. Improved aromatic substitution–rearrangement-based ratiometric fluorescent cysteine-specific probe and its application of real-time imaging under oxidative stress in living zebrafish[J]. Analytical Chemistry,2017,89(17):9567−9573. doi: 10.1021/acs.analchem.7b02649
|
[30] |
ARROYO I J, HU R, TANG B Z, et al. 8-Alkenylborondipyrromethene dyes. general synthesis, optical properties, and preliminary study of their reactivity[J]. Tetrahedron,2011,67(38):7244−7250. doi: 10.1016/j.tet.2011.07.067
|
[1] | CHEN Yongfang, LI Yanke, ZHANG Shujing. Mechanism of Poria cocos Polysaccharide Regulating Autophagy and Chemotherapy Resistance of Hepatocellular Carcinoma Cells through LncRNAHCG11/miR-539-3p 539-3p[J]. Science and Technology of Food Industry, 2024, 45(22): 322-330. DOI: 10.13386/j.issn1002-0306.2023110291 |
[2] | LÜ Chenhao, LI Junjian, CHEN Chang'an, HE Zhilin, DU Bing, LI Pan. Anti-aging and in Vitro Antioxidant Effects of Water Extracts of Fermented Pericarpium Citri Reticulatae on Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(17): 428-437. DOI: 10.13386/j.issn1002-0306.2022110162 |
[3] | YAN Jing, XUE Qiuyan, WANG Yang, CHEN Wenyi, XIE Shiqing, JIANG Jinjin, LI Pan, DU Bing. Hypolipidemic and Antioxidant Effects of Fermented Rice Buckwheat on High-fat Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2023, 44(6): 8-15. DOI: 10.13386/j.issn1002-0306.2022070044 |
[4] | WANG Gaojian, WANG Zhenzhen, LI Jiajia, FAN Haoan, SHA Ruyi, MAO Jianwei. Antioxidant Activity in Vitro and Promoting Resistance to Oxidative Stress in Caenorhabditis elegans of Blueberry Jiaosu[J]. Science and Technology of Food Industry, 2021, 42(15): 343-350. DOI: 10.13386/j.issn1002-0306.2020110157 |
[5] | LIU Chang, XU Yue, SHAN Cheng-ying, ZHU Chang-ling, ZHAO Fei, ZHANG Huan-shi. Exploring the Antioxidant Activity in Vivo of Coriander Extract in Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2020, 41(20): 285-289. DOI: 10.13386/j.issn1002-0306.2020.20.047 |
[6] | XU Jie, WANG Jun, TAN Xin-tong, LI Da-peng. Research Progress of Foodborne Flavonoids Interfering with Diseases by Regulating Autophagy[J]. Science and Technology of Food Industry, 2020, 41(16): 326-333. DOI: 10.13386/j.issn1002-0306.2020.16.052 |
[7] | SUN Yan, CUI Xu-sheng, LIU Jing, TIAN He, YANG Yan-fang, LI Ya-fen, BAO Jing-jing, LI Chun-lin, WANG Qing, ZHANG Yan-qing, XIE Jun-bo. Optimization of Extraction Process of Flavonoids from Ziziphus jujuba Mill var. spinosa Leaves and Its Antioxidant Damage Activity in Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2020, 41(8): 143-150. DOI: 10.13386/j.issn1002-0306.2020.08.023 |
[8] | XIE Yong-lei, CUI Ming-chen, HUANG Ya-nan, LI Pan-xin, XU Wan-ling, MA Yong-chao. Effects of Soybean Peptide on Haemodynamics and Myocardial Autophagy Levels in Rats with Exhaustive Exercise[J]. Science and Technology of Food Industry, 2019, 40(22): 316-320. DOI: 10.13386/j.issn1002-0306.2019.22.055 |
[9] | LIAO Xin, CHEN Wen-ying, LI Yi-zhou, LI Chen, LIU Xin-miao, SHEN Xiao-li. Oleanolic Acid Antagonized Autophagic Death of HEK293T Cells Induced by Ochratoxin A[J]. Science and Technology of Food Industry, 2019, 40(3): 286-289,295. DOI: 10.13386/j.issn1002-0306.2019.03.045 |
[10] | CHEN Jing-yao, ZHOU Jie, HAN Bin, LI Fei, ZHU Yan-feng, YU Xiao-ping. Delphinidin sensitizes anti-tumor effect to HER-2+breast cancer cells by combining with 3-MA[J]. Science and Technology of Food Industry, 2017, (02): 354-357. DOI: 10.13386/j.issn1002-0306.2017.02.060 |
1. |
杨宇恒,郑宇航,王文卓,刘芳,张新笑,孙芝兰. 真空包装鸡肉肠产气微生物分离鉴定及胀袋原因探析. 肉类研究. 2024(04): 36-42 .
![]() | |
2. |
胡文静,刘小雪,梁栋,焦凌霞. 肌苷对酸土脂环酸芽孢杆菌生长及生物膜形成的影响. 中国食品学报. 2023(09): 242-251 .
![]() | |
3. |
许育民,任兰兰,张颖,刘亚慧,王海花,张晓静,张晓峰. 抗食源性病原菌细菌素的筛选及特性研究. 食品安全质量检测学报. 2022(04): 1170-1175 .
![]() | |
4. |
刘小杰,舒志成,赵志红,左迪. 调节血脂保健粥的研制. 食品工业科技. 2021(22): 240-245 .
![]() |