QUAN Wenjing, LIU Chao, LI Ao, et al. Transcriptomics Study of Sanxiapeptin against Penicillium digitatum as an Antifungal[J]. Science and Technology of Food Industry, 2022, 43(6): 109−117. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060047.
Citation: QUAN Wenjing, LIU Chao, LI Ao, et al. Transcriptomics Study of Sanxiapeptin against Penicillium digitatum as an Antifungal[J]. Science and Technology of Food Industry, 2022, 43(6): 109−117. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060047.

Transcriptomics Study of Sanxiapeptin against Penicillium digitatum as an Antifungal

More Information
  • Received Date: June 07, 2021
  • Available Online: January 12, 2022
  • To analyze the inhibitory mechanism of Sanxiapeptin on the main postharvest spoilage fungus P. digitatum of citrus fruits, the morphology responded to Sanxiapeptin was observed by microscopy. The cell wall protective agent sorbitol and cell membrane protective agent ergosterol were used to analyze the inhibitory effects of Sanxiapeptin on the fungi. Through BGISEQ-500 research platform, the transcriptome of P. digitatum treated by Sanxiapeptin was sequenced, and the 6.38 Gb data were analyzed by non-parameter method. The results showed that the cell surface morphology changed significantly after treatment by Sanxiapeptin. Unlike the positive control Bellkute, a membrane-target antifungal, the cell membrane protector of ergosterol significantly alleviated the inhibitory effect of Sanxiapeptin, while the cell wall protector of sorbitol promoted the antifungal ability. The transcriptome alignment rate reached 93.66%, showing high sequencing quality. Sanxiapeptin affected the expression of more than 2000 genes in P. digitatum, which mainly involved in the components of cell membrane and cell wall, autophagy and sugar metabolism. In view of the different pathway from Bellkute, 530 differentially expressed genes caused by Sanxiapeptin alone were analyzed, and these genes were mainly related to the metabolism of hydrophobin, ergosterol, glycan and GPI (glycosylphosphatidylinositol). 17 candidate genes were selected for semi-quantitative expression verification by RT-PCR, among them, 8 genes were completely consistent with the transcriptome sequencing. All the results indicated that Sanxiapeptin could inhibit the postharvest decay fungi in citrus mediated by cell walls or cell membranes.
  • [1]
    赵莹, 梁克力, 贾纪春, 等. 不同时期的柑橘果实中真菌种类分析[J]. 植物病理学报,2017,47(3):389−397. [ZHAO Y, LIANG K L, JIA J C, et al. Fungal community diversity in citrus fruit at different ripening stage[J]. Acta Phytopathologica Sinica,2017,47(3):389−397.
    [2]
    解淑慧, 邵兴锋, 王可, 等. 柑橘采后腐烂主要致病菌的分离鉴定及丁香精油对其抑制作用研究[J]. 果树学报,2013,30(1):134−139. [XIE S H, SHAO X F, WANG K, et al. Isolation and identification of dominant pathogen on citrus fruit and the antifungal effect of clove oil on these fungi[J]. Journal of Fruit Science,2013,30(1):134−139.
    [3]
    闵晓芳. 柑橘采后致病青霉的分离鉴定及其生物学特性研究[D]. 武汉: 华中农业大学, 2007.

    MIN X F. Study on separation, identification and biological characteristics of Penicillium spp causing diseases of citrus[D]. Wuhan: Huazhong Agricultural University, 2007.
    [4]
    孔玉珊, 秦田明, 薛艳红, 等. 疏花水柏枝内生真菌对三峡地区柑橘致腐菌的拮抗作用研究[J]. 食品工业科技,2015,36(8):175−177. [KONG Y S, QIN T M, XUE Y H, et al. Antimicrobial effect of endophytes from Myricaria laxiflora on the fungus causing citrus rot in Three Gorges area[J]. Science and Technology of Food Industry,2015,36(8):175−177.
    [5]
    SONG Y Y, HE L M, CHEN L L, et al. Baseline sensitivity and control efficacy of antibiosis fungicide tetramycin against Botrytis cinerea[J]. European Journal of Plant Pathology,2016,146(2):337−347. doi: 10.1007/s10658-016-0920-z
    [6]
    SMITS T H M, DUFFY B, BLOM J, et al. Pantocin A, a peptide-derived antibiotic involved in biological control byplant-associated Pantoea species[J]. Archives of Microbiology,2019,201:713−722. doi: 10.1007/s00203-019-01647-7
    [7]
    潘园园, 刘钢. 中国丝状真菌次级代谢分子调控研究进展[J]. 遗传,2018,40(10):874−887. [PAN Y Y, LIU G. Research advances on molecular regulation of filamentous fungal secondary metabolism in China[J]. Hereditas (Beijing),2018,40(10):874−887.
    [8]
    YANG L P, XIE J T, JIANG D H, et al. Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi[J]. World Journal of Microbiology and Biotechnology,2008,24(7):909−915. doi: 10.1007/s11274-007-9626-x
    [9]
    金清, 肖明. 新型抗菌肽-表面活性素、伊枯草菌素和丰原素[J]. 微生物与感染,2018,13(1):56−64. [JIN Q, XIAO M. Novel antimicrobial peptides: Surfactin, iturin and fengycin[J]. Journal of Microbes and Infections,2018,13(1):56−64. doi: 10.3969/j.issn.1673-6184.2018.01.010
    [10]
    甄阳光. 抗菌肽研究进展及应用[J]. 饲料博览,2018(7):8−11. [ZHEN Y G. Research progress and application of antimicrobial peptides[J]. Feed Review,2018(7):8−11. doi: 10.3969/j.issn.1001-0084.2018.07.003
    [11]
    孙榕壑. 抗菌肽与类抗菌肽研究[J]. 当代化工研究,2018(5):176−177. [SUN R H. Study on antimicrobial peptides and antimicrobial peptide-like[J]. Chenmical Intermediate,2018(5):176−177. doi: 10.3969/j.issn.1672-8114.2018.05.109
    [12]
    张景翔, 阎澜, 姜远英, 等. 新的抗真菌药物靶点研究进展[J]. 菌物学报,2018,37(10):1378−1390. [ZHANG J X, YAN L, JIANG Y Y, et al. The research progress of novel antifungal drug targets[J]. Mycosystema,2018,37(10):1378−1390.
    [13]
    MA Y, YU H, LIU W, et al. Integrated proteomics and metabolomics analysis reveals the antifungal mechanism of the C-coordinated O-carboxymethyl chitosan Cu(II) complex[J]. Int J Biol Macromol,2020,155(15):1491−1509.
    [14]
    陈頔, 曹国颖, 傅得兴, 等. 棘白霉素类抗真菌药的研究进展[J]. 中国新药杂志,2007(14):1082−1087. [CHEN D, CAO G Y, FU D X, et al. Advances in research of echinocandins drugs as antifungalagents[J]. Chinese Journal of New Drugs,2007(14):1082−1087. doi: 10.3321/j.issn:1003-3734.2007.14.005
    [15]
    杨炜华, 高培基. 青霉源抗菌肽类霉肽素的体外抑菌活性研究[J]. 中国医药生物技术,2009,4(3):190−192. [YANG W H, GAO P. In vitro activity of an antibacterial peptide AF generated by Penicillium[J]. Chin Med Biotechnol,2009,4(3):190−192. doi: 10.3969/cmba.j.issn.1673-713X.2009.03.006
    [16]
    杨宇纯, 肖梅, 刘呈雄, 等. 草酸青霉中新型线性五肽的发现及对柑橘采后致腐菌拮抗活性研究[J]. 微生物学通报,2019(10):481−490. [YANG Y C, XIAO M, LIU C X, et al. A novel linear pentapeptide from Penicillium oxalicum and its antagonism against postharvest decay mold of citrus[J]. Microbiology China,2019(10):481−490.
    [17]
    张俊. 丙环唑对核盘菌和指状青霉菌抑制作用的研究[D]. 武汉: 华中农业大学, 2019.

    ZHANG J. Inhibitory effects of propiconazole on Sclerotinia sclerotiorum and Penicillium digitatum[D]. Wuhan: Huazhong Agricultural University, 2019.
    [18]
    熊琪, 杨书珍, 曹正清. 毛霉诱导脐橙产抗病物质对指状青霉和酸腐菌的抑制[J]. 农业工程学报,2020,36(6):315−321. [XIONG Q, YANG S Z, CAO Z Q, et al. Inhibition of induced citrus peel disease-resistant components against Penicillium digitatum and Geotrichum citri-aurantii[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(6):315−321.
    [19]
    潘顺, 刘雷, 王为民, 等. 哈茨木霉发酵液中peptaibols抗菌肽的鉴定及活性研究[J]. 中国生物防治学报,2012,28(4):528−536. [PAN S, LIU L, WANG W W, et al. Identification of antibiotic peptaibols from fermentation broth of Trichoderma harzianum[J]. Chinese Journal of Biological Control,2012,28(4):528−536. doi: 10.3969/j.issn.2095-039X.2012.04.014
    [20]
    倪密. 人工合成抗菌肽抑制棉花黄萎病菌的机制及应用研究[D]. 杭州: 浙江大学, 2012.

    NI M. Mechanism of synthetic antifungal peptides against Verticillium dahliae and its application in cotton breeding[D]. Hangzhou: Zhejiang University, 2012.
    [21]
    夏小双. 壳聚糖对扩展青霉的抑制作用及其机理的初步研究[D]. 镇江: 江苏大学, 2019.

    XIA X S. Studies on the control of chitosan on alternaria rot of pingguoli pear (Pyrus bretschneideri Rehd) fruits and its antifungal mechanism[D]. Zhenjiang: Jiangsu University, 2019.
    [22]
    戚雯雯, 沈玉婷, 陈楚英, 等. 江香薷活性成分香芹酚对指状青霉的抑菌作用[J]. 现代食品科技,2018,34(11):65−69. [QI W W, SHEN Y T, CHEN C Y, et al. Antifungal mechanisms of the active ingredients carvacrol of Mosla chinensis ‘Jiangxiangru’ against Penicillium digitatum[J]. Modern Food Science and Technology,2018,34(11):65−69.
    [23]
    颜志秀. 螺旋藻抗真菌肽的分离纯化及其对柑橘腐败真菌的抑制活性研究[D]. 北京: 北京林业大学, 2019.

    YAN Z X. Isolation, purification and inhibitory activity against citrus spoilage fungi of antifungal peptide from Spirulina platensis[D]. Beijing: Beijing Forestry University, 2019.
    [24]
    VELIVELLI S L S, CZYMMEK K J, LI H, et al. Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection[J]. Proc Natl Acad Sci U S A,2020,117(27):16043−16054. doi: 10.1073/pnas.2003526117
    [25]
    刘超, 宋瑾怡, 薛艳红, 等. 草酸青霉线性五肽生物合成的比较转录组分析[J]. 食品与生物技术学报,2021,40(5):37−44. [LIU C, SONG J Y, XUE Y H, et al. Comparative transcriptome analysis of linear pentapeptide biosynthesis in Penicillium oxalicum[J]. Journal of Food Science and Biotechnology,2021,40(5):37−44. doi: 10.3969/j.issn.1673-1689.2021.05.005
    [26]
    刘超, 李坤, 白晓轩, 等. 利用转录组学分析三峡肽素生物合成的基因簇[J]. 食品工业科技,2021,42(13):156−162. [LIU C, LI K, BAI X X, et al. Analysis of gene clusters for Sanxiapeptin biosynthesis by transcriptomic sequencing[J]. Science and Technology of Food Industry,2021,42(13):156−162.
    [27]
    SONG X, HAN M, HE F, et al. Antifungal mechanism of dipicolinic acid and its efficacy for the biocontrol of pear valsa canker[J]. Front Microbiol,2020,20(11):958.
    [28]
    REDDY G K K, NANCHARAIAH Y V. Alkylimidazolium ionic liquids as antifungal alternatives: Antibiofilm activity against Candida albicans and underlying mechanism of action[J]. Front Microbiol,2020,21(11):730.
    [29]
    张美红, 王萌, 杨书珍, 等. β-蒎烯抑制柑橘意大利青霉作用机制初步研究[J]. 华中农业大学学报,2018,37(6):91−97. [ZHANG M H, WANG M, YANG S Z, et al. Possible action mode of beta-pinene against Penicillium italicum[J]. Journal of Huazhong Agricultural University,2018,37(6):91−97.
    [30]
    王玉书, 王欢, 范震宇, 等. 基于转录组测序的羽衣甘蓝叶色相关基因分析[J]. 基因组学与应用生物学,2020,39(1):200−206. [WANG Y S, WANG H, FAN Z Y, et al. Identifying genes associated with leaf color in kale (Brassica oleracea L. var. acephala DC.) based on transcriptome analysis[J]. Genomics and Applied Biology,2020,39(1):200−206.
    [31]
    刘伟, 王俊燚, 李萌, 等. 基于转录组测序的银杏类黄酮生物合成关键基因表达分析[J]. 中草药,2018,49(23):5633−5639. [LIU W, WANG J Y, LI M, et al. Transcriptome sequencing analysis of gene expression of flavonoid biosynthesis in Ginkgo biloba[J]. Chinese Traditional and Herbal Drugs,2018,49(23):5633−5639. doi: 10.7501/j.issn.0253-2670.2018.23.024
    [32]
    RODRÍGUEZ GARCÍA A, SOLA LANDA A, BARREIRO C. RNA-Seq-based comparative transcriptomics: RNA preparation and bioinformatics[J]. Methods in Molecular Biology,2017,1645:59−72.
    [33]
    HRDLICKOVA R, TOLOUE M, TIAN B. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdisciplinary Reviews-RNA,2017,8(1):10.
  • Related Articles

    [1]LI Rushu, HOU Litian, LI Ruohan, CHEN Jingyu. Research Progress on Bioactive Components and Aroma Quality of Mulberry Wine[J]. Science and Technology of Food Industry, 2024, 45(7): 328-334. DOI: 10.13386/j.issn1002-0306.2023030142
    [2]LI Mingyue, LIU Hongyan, XIAO Jing, GENG Fang, WU Dingtao, LI Huabin, GAN Renyou. Research Progress on Bioactive Components, Biological Activities, and Processing Technology of Daylily (Hemerocallis citrina Baroni)[J]. Science and Technology of Food Industry, 2022, 43(19): 427-435. DOI: 10.13386/j.issn1002-0306.2021090275
    [3]LIU Cong, ZHOU Xin, LUO Jinxu, XIA Minquan, LI Xiaomeng, WANG Chen, CAI Zhaoxia. Active Proteins and Phospholipids Prepared from Chicken Egg Yolk by Green and Efficient Sequential Separation Technology[J]. Science and Technology of Food Industry, 2022, 43(1): 180-187. DOI: 10.13386/j.issn1002-0306.2021040149
    [4]LIU Yu-feng, ZENG Jia-rui, HUANG Wen-qi, WU Zhen-qiang. Regulating Effect of Exogenous Carbon Source on Microbial Growth and Metabolism in Grape Fermentation and Its Bioactivity[J]. Science and Technology of Food Industry, 2020, 41(8): 104-110,116. DOI: 10.13386/j.issn1002-0306.2020.08.017
    [5]PI Li, FENG Hai-sheng, ZHU Qing-yun, TAN liang, LI Cai-xia, LI Yu-lin, MA Shi-zhen. Analysis and Assessment of Bioactive Components of Potentilla fruticosa Leaves in Different Ecological Areas of Qinghai Province[J]. Science and Technology of Food Industry, 2019, 40(4): 261-265. DOI: 10.13386/j.issn1002-0306.2019.04.043
    [6]CHENG Wen-tao, YUAN Qi-feng, XIAO Tu-jian, CHEN Nan, WANG Li-juan, WANG Zhuang, MA Yu-hua, ZHOU Jun-liang. Research Progress on Bioactive Substances and Physiological Functions of Passion Fruit[J]. Science and Technology of Food Industry, 2018, 39(16): 346-351. DOI: 10.13386/j.issn1002-0306.2018.16.062
    [7]WU Xiao-ling, XIANG Zhao-bao. Progress in nutritional components and bioactive components of Canarium album L.[J]. Science and Technology of Food Industry, 2017, (24): 346-352. DOI: 10.13386/j.issn1002-0306.2017.24.067
    [8]ZHONG Yan- mei, ZHENG Qing- mei, ZENG Xian- lu, DENG Miao- ling. Effect of exogenous catalase on the pigment composition of fermented instant black tea[J]. Science and Technology of Food Industry, 2016, (03): 256-260. DOI: 10.13386/j.issn1002-0306.2016.03.045
    [9]MU Shi-yang, HU Wen-zhong, JIANG Ai-li. Review on the nutritional ingredients and bioactive ingredients of Artemisia integrifolia L.[J]. Science and Technology of Food Industry, 2015, (13): 385-387. DOI: 10.13386/j.issn1002-0306.2015.13.073
    [10]ZHONG Zi-xuan, LIU Li, ZHANG Yong, LUO Feng. Induction on the Manganese Peroxidase of white-rot fungi by exogenous inducers and interspecific induction[J]. Science and Technology of Food Industry, 2015, (09): 166-170. DOI: 10.13386/j.issn1002-0306.2015.09.028

Catalog

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return