Citation: | QUAN Wenjing, LIU Chao, LI Ao, et al. Transcriptomics Study of Sanxiapeptin against Penicillium digitatum as an Antifungal[J]. Science and Technology of Food Industry, 2022, 43(6): 109−117. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060047. |
[1] |
赵莹, 梁克力, 贾纪春, 等. 不同时期的柑橘果实中真菌种类分析[J]. 植物病理学报,2017,47(3):389−397. [ZHAO Y, LIANG K L, JIA J C, et al. Fungal community diversity in citrus fruit at different ripening stage[J]. Acta Phytopathologica Sinica,2017,47(3):389−397.
|
[2] |
解淑慧, 邵兴锋, 王可, 等. 柑橘采后腐烂主要致病菌的分离鉴定及丁香精油对其抑制作用研究[J]. 果树学报,2013,30(1):134−139. [XIE S H, SHAO X F, WANG K, et al. Isolation and identification of dominant pathogen on citrus fruit and the antifungal effect of clove oil on these fungi[J]. Journal of Fruit Science,2013,30(1):134−139.
|
[3] |
闵晓芳. 柑橘采后致病青霉的分离鉴定及其生物学特性研究[D]. 武汉: 华中农业大学, 2007.
MIN X F. Study on separation, identification and biological characteristics of Penicillium spp causing diseases of citrus[D]. Wuhan: Huazhong Agricultural University, 2007.
|
[4] |
孔玉珊, 秦田明, 薛艳红, 等. 疏花水柏枝内生真菌对三峡地区柑橘致腐菌的拮抗作用研究[J]. 食品工业科技,2015,36(8):175−177. [KONG Y S, QIN T M, XUE Y H, et al. Antimicrobial effect of endophytes from Myricaria laxiflora on the fungus causing citrus rot in Three Gorges area[J]. Science and Technology of Food Industry,2015,36(8):175−177.
|
[5] |
SONG Y Y, HE L M, CHEN L L, et al. Baseline sensitivity and control efficacy of antibiosis fungicide tetramycin against Botrytis cinerea[J]. European Journal of Plant Pathology,2016,146(2):337−347. doi: 10.1007/s10658-016-0920-z
|
[6] |
SMITS T H M, DUFFY B, BLOM J, et al. Pantocin A, a peptide-derived antibiotic involved in biological control byplant-associated Pantoea species[J]. Archives of Microbiology,2019,201:713−722. doi: 10.1007/s00203-019-01647-7
|
[7] |
潘园园, 刘钢. 中国丝状真菌次级代谢分子调控研究进展[J]. 遗传,2018,40(10):874−887. [PAN Y Y, LIU G. Research advances on molecular regulation of filamentous fungal secondary metabolism in China[J]. Hereditas (Beijing),2018,40(10):874−887.
|
[8] |
YANG L P, XIE J T, JIANG D H, et al. Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi[J]. World Journal of Microbiology and Biotechnology,2008,24(7):909−915. doi: 10.1007/s11274-007-9626-x
|
[9] |
金清, 肖明. 新型抗菌肽-表面活性素、伊枯草菌素和丰原素[J]. 微生物与感染,2018,13(1):56−64. [JIN Q, XIAO M. Novel antimicrobial peptides: Surfactin, iturin and fengycin[J]. Journal of Microbes and Infections,2018,13(1):56−64. doi: 10.3969/j.issn.1673-6184.2018.01.010
|
[10] |
甄阳光. 抗菌肽研究进展及应用[J]. 饲料博览,2018(7):8−11. [ZHEN Y G. Research progress and application of antimicrobial peptides[J]. Feed Review,2018(7):8−11. doi: 10.3969/j.issn.1001-0084.2018.07.003
|
[11] |
孙榕壑. 抗菌肽与类抗菌肽研究[J]. 当代化工研究,2018(5):176−177. [SUN R H. Study on antimicrobial peptides and antimicrobial peptide-like[J]. Chenmical Intermediate,2018(5):176−177. doi: 10.3969/j.issn.1672-8114.2018.05.109
|
[12] |
张景翔, 阎澜, 姜远英, 等. 新的抗真菌药物靶点研究进展[J]. 菌物学报,2018,37(10):1378−1390. [ZHANG J X, YAN L, JIANG Y Y, et al. The research progress of novel antifungal drug targets[J]. Mycosystema,2018,37(10):1378−1390.
|
[13] |
MA Y, YU H, LIU W, et al. Integrated proteomics and metabolomics analysis reveals the antifungal mechanism of the C-coordinated O-carboxymethyl chitosan Cu(II) complex[J]. Int J Biol Macromol,2020,155(15):1491−1509.
|
[14] |
陈頔, 曹国颖, 傅得兴, 等. 棘白霉素类抗真菌药的研究进展[J]. 中国新药杂志,2007(14):1082−1087. [CHEN D, CAO G Y, FU D X, et al. Advances in research of echinocandins drugs as antifungalagents[J]. Chinese Journal of New Drugs,2007(14):1082−1087. doi: 10.3321/j.issn:1003-3734.2007.14.005
|
[15] |
杨炜华, 高培基. 青霉源抗菌肽类霉肽素的体外抑菌活性研究[J]. 中国医药生物技术,2009,4(3):190−192. [YANG W H, GAO P. In vitro activity of an antibacterial peptide AF generated by Penicillium[J]. Chin Med Biotechnol,2009,4(3):190−192. doi: 10.3969/cmba.j.issn.1673-713X.2009.03.006
|
[16] |
杨宇纯, 肖梅, 刘呈雄, 等. 草酸青霉中新型线性五肽的发现及对柑橘采后致腐菌拮抗活性研究[J]. 微生物学通报,2019(10):481−490. [YANG Y C, XIAO M, LIU C X, et al. A novel linear pentapeptide from Penicillium oxalicum and its antagonism against postharvest decay mold of citrus[J]. Microbiology China,2019(10):481−490.
|
[17] |
张俊. 丙环唑对核盘菌和指状青霉菌抑制作用的研究[D]. 武汉: 华中农业大学, 2019.
ZHANG J. Inhibitory effects of propiconazole on Sclerotinia sclerotiorum and Penicillium digitatum[D]. Wuhan: Huazhong Agricultural University, 2019.
|
[18] |
熊琪, 杨书珍, 曹正清. 毛霉诱导脐橙产抗病物质对指状青霉和酸腐菌的抑制[J]. 农业工程学报,2020,36(6):315−321. [XIONG Q, YANG S Z, CAO Z Q, et al. Inhibition of induced citrus peel disease-resistant components against Penicillium digitatum and Geotrichum citri-aurantii[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(6):315−321.
|
[19] |
潘顺, 刘雷, 王为民, 等. 哈茨木霉发酵液中peptaibols抗菌肽的鉴定及活性研究[J]. 中国生物防治学报,2012,28(4):528−536. [PAN S, LIU L, WANG W W, et al. Identification of antibiotic peptaibols from fermentation broth of Trichoderma harzianum[J]. Chinese Journal of Biological Control,2012,28(4):528−536. doi: 10.3969/j.issn.2095-039X.2012.04.014
|
[20] |
倪密. 人工合成抗菌肽抑制棉花黄萎病菌的机制及应用研究[D]. 杭州: 浙江大学, 2012.
NI M. Mechanism of synthetic antifungal peptides against Verticillium dahliae and its application in cotton breeding[D]. Hangzhou: Zhejiang University, 2012.
|
[21] |
夏小双. 壳聚糖对扩展青霉的抑制作用及其机理的初步研究[D]. 镇江: 江苏大学, 2019.
XIA X S. Studies on the control of chitosan on alternaria rot of pingguoli pear (Pyrus bretschneideri Rehd) fruits and its antifungal mechanism[D]. Zhenjiang: Jiangsu University, 2019.
|
[22] |
戚雯雯, 沈玉婷, 陈楚英, 等. 江香薷活性成分香芹酚对指状青霉的抑菌作用[J]. 现代食品科技,2018,34(11):65−69. [QI W W, SHEN Y T, CHEN C Y, et al. Antifungal mechanisms of the active ingredients carvacrol of Mosla chinensis ‘Jiangxiangru’ against Penicillium digitatum[J]. Modern Food Science and Technology,2018,34(11):65−69.
|
[23] |
颜志秀. 螺旋藻抗真菌肽的分离纯化及其对柑橘腐败真菌的抑制活性研究[D]. 北京: 北京林业大学, 2019.
YAN Z X. Isolation, purification and inhibitory activity against citrus spoilage fungi of antifungal peptide from Spirulina platensis[D]. Beijing: Beijing Forestry University, 2019.
|
[24] |
VELIVELLI S L S, CZYMMEK K J, LI H, et al. Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection[J]. Proc Natl Acad Sci U S A,2020,117(27):16043−16054. doi: 10.1073/pnas.2003526117
|
[25] |
刘超, 宋瑾怡, 薛艳红, 等. 草酸青霉线性五肽生物合成的比较转录组分析[J]. 食品与生物技术学报,2021,40(5):37−44. [LIU C, SONG J Y, XUE Y H, et al. Comparative transcriptome analysis of linear pentapeptide biosynthesis in Penicillium oxalicum[J]. Journal of Food Science and Biotechnology,2021,40(5):37−44. doi: 10.3969/j.issn.1673-1689.2021.05.005
|
[26] |
刘超, 李坤, 白晓轩, 等. 利用转录组学分析三峡肽素生物合成的基因簇[J]. 食品工业科技,2021,42(13):156−162. [LIU C, LI K, BAI X X, et al. Analysis of gene clusters for Sanxiapeptin biosynthesis by transcriptomic sequencing[J]. Science and Technology of Food Industry,2021,42(13):156−162.
|
[27] |
SONG X, HAN M, HE F, et al. Antifungal mechanism of dipicolinic acid and its efficacy for the biocontrol of pear valsa canker[J]. Front Microbiol,2020,20(11):958.
|
[28] |
REDDY G K K, NANCHARAIAH Y V. Alkylimidazolium ionic liquids as antifungal alternatives: Antibiofilm activity against Candida albicans and underlying mechanism of action[J]. Front Microbiol,2020,21(11):730.
|
[29] |
张美红, 王萌, 杨书珍, 等. β-蒎烯抑制柑橘意大利青霉作用机制初步研究[J]. 华中农业大学学报,2018,37(6):91−97. [ZHANG M H, WANG M, YANG S Z, et al. Possible action mode of beta-pinene against Penicillium italicum[J]. Journal of Huazhong Agricultural University,2018,37(6):91−97.
|
[30] |
王玉书, 王欢, 范震宇, 等. 基于转录组测序的羽衣甘蓝叶色相关基因分析[J]. 基因组学与应用生物学,2020,39(1):200−206. [WANG Y S, WANG H, FAN Z Y, et al. Identifying genes associated with leaf color in kale (Brassica oleracea L. var. acephala DC.) based on transcriptome analysis[J]. Genomics and Applied Biology,2020,39(1):200−206.
|
[31] |
刘伟, 王俊燚, 李萌, 等. 基于转录组测序的银杏类黄酮生物合成关键基因表达分析[J]. 中草药,2018,49(23):5633−5639. [LIU W, WANG J Y, LI M, et al. Transcriptome sequencing analysis of gene expression of flavonoid biosynthesis in Ginkgo biloba[J]. Chinese Traditional and Herbal Drugs,2018,49(23):5633−5639. doi: 10.7501/j.issn.0253-2670.2018.23.024
|
[32] |
RODRÍGUEZ GARCÍA A, SOLA LANDA A, BARREIRO C. RNA-Seq-based comparative transcriptomics: RNA preparation and bioinformatics[J]. Methods in Molecular Biology,2017,1645:59−72.
|
[33] |
HRDLICKOVA R, TOLOUE M, TIAN B. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdisciplinary Reviews-RNA,2017,8(1):10.
|
[1] | LI Rushu, HOU Litian, LI Ruohan, CHEN Jingyu. Research Progress on Bioactive Components and Aroma Quality of Mulberry Wine[J]. Science and Technology of Food Industry, 2024, 45(7): 328-334. DOI: 10.13386/j.issn1002-0306.2023030142 |
[2] | LI Mingyue, LIU Hongyan, XIAO Jing, GENG Fang, WU Dingtao, LI Huabin, GAN Renyou. Research Progress on Bioactive Components, Biological Activities, and Processing Technology of Daylily (Hemerocallis citrina Baroni)[J]. Science and Technology of Food Industry, 2022, 43(19): 427-435. DOI: 10.13386/j.issn1002-0306.2021090275 |
[3] | LIU Cong, ZHOU Xin, LUO Jinxu, XIA Minquan, LI Xiaomeng, WANG Chen, CAI Zhaoxia. Active Proteins and Phospholipids Prepared from Chicken Egg Yolk by Green and Efficient Sequential Separation Technology[J]. Science and Technology of Food Industry, 2022, 43(1): 180-187. DOI: 10.13386/j.issn1002-0306.2021040149 |
[4] | LIU Yu-feng, ZENG Jia-rui, HUANG Wen-qi, WU Zhen-qiang. Regulating Effect of Exogenous Carbon Source on Microbial Growth and Metabolism in Grape Fermentation and Its Bioactivity[J]. Science and Technology of Food Industry, 2020, 41(8): 104-110,116. DOI: 10.13386/j.issn1002-0306.2020.08.017 |
[5] | PI Li, FENG Hai-sheng, ZHU Qing-yun, TAN liang, LI Cai-xia, LI Yu-lin, MA Shi-zhen. Analysis and Assessment of Bioactive Components of Potentilla fruticosa Leaves in Different Ecological Areas of Qinghai Province[J]. Science and Technology of Food Industry, 2019, 40(4): 261-265. DOI: 10.13386/j.issn1002-0306.2019.04.043 |
[6] | CHENG Wen-tao, YUAN Qi-feng, XIAO Tu-jian, CHEN Nan, WANG Li-juan, WANG Zhuang, MA Yu-hua, ZHOU Jun-liang. Research Progress on Bioactive Substances and Physiological Functions of Passion Fruit[J]. Science and Technology of Food Industry, 2018, 39(16): 346-351. DOI: 10.13386/j.issn1002-0306.2018.16.062 |
[7] | WU Xiao-ling, XIANG Zhao-bao. Progress in nutritional components and bioactive components of Canarium album L.[J]. Science and Technology of Food Industry, 2017, (24): 346-352. DOI: 10.13386/j.issn1002-0306.2017.24.067 |
[8] | ZHONG Yan- mei, ZHENG Qing- mei, ZENG Xian- lu, DENG Miao- ling. Effect of exogenous catalase on the pigment composition of fermented instant black tea[J]. Science and Technology of Food Industry, 2016, (03): 256-260. DOI: 10.13386/j.issn1002-0306.2016.03.045 |
[9] | MU Shi-yang, HU Wen-zhong, JIANG Ai-li. Review on the nutritional ingredients and bioactive ingredients of Artemisia integrifolia L.[J]. Science and Technology of Food Industry, 2015, (13): 385-387. DOI: 10.13386/j.issn1002-0306.2015.13.073 |
[10] | ZHONG Zi-xuan, LIU Li, ZHANG Yong, LUO Feng. Induction on the Manganese Peroxidase of white-rot fungi by exogenous inducers and interspecific induction[J]. Science and Technology of Food Industry, 2015, (09): 166-170. DOI: 10.13386/j.issn1002-0306.2015.09.028 |