Citation: | TIAN Ran, FENG Junran, SUI Xiaonan, et al. Effect of High Intensity Ultrasound on the Conformational and Physicochemical Properties of Soy 7S and 11S Globulin[J]. Science and Technology of Food Industry, 2022, 43(5): 87−97. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060028. |
[1] |
HUANG L R, DING X N, Li Y L, et al. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid[J]. Food Chemistry,2019,279:114−119. doi: 10.1016/j.foodchem.2018.11.147
|
[2] |
MARUYAMA N, ADACHI M, TAKAHASHI K, et al. Crystal structures of recombinant and native soybean β-conglycinin β homotrimers[J]. European Journal of Biochemistry,2001,268(12):3595−3604. doi: 10.1046/j.1432-1327.2001.02268.x
|
[3] |
KITAMURA K, SHIBASAKI K. Isolation and some physico-chemical properties of the acidic subunits of soybean 11S globulin[J]. Agricultural and Biological Chemistry,1975,39(5):945−951.
|
[4] |
JIANG J, CHEN J, XIONG Y L. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes[J]. Journal of Agricultural and Food Chemistry,2009,57(16):7576−7583. doi: 10.1021/jf901585n
|
[5] |
SUN X Y, ZHANG W, ZHANG L F, et al. Effect of ultrasound‐assisted extraction on the structure and emulsifying properties of peanut protein isolate[J]. Journal of the Science of Food and Agriculture,2021,101(3):1150−1160. doi: 10.1002/jsfa.10726
|
[6] |
MA X B, YAN T Y, HOU F R, et al. Formation of soy protein isolate (SPI)-citrus pectin (CP) electrostatic complexes under a high-intensity ultrasonic field: Linking the enhanced emulsifying properties to physicochemical and structural properties[J]. Ultrasonics sonochemistry,2019,59:104748. doi: 10.1016/j.ultsonch.2019.104748
|
[7] |
MCCLEMENTS D J. Advances in the application of ultrasound in food analysis and processing[J]. Trends in Food Science & Technology,1995,6(9):293−299.
|
[8] |
FAN X J, LI S, ZHANG A, et al. Mechanism of change of the physicochemical characteristics, gelation process, water state, and microstructure of okara tofu analogues induced by high-intensity ultrasound treatment[J]. Food Hydrocolloids,2021,111:106241. doi: 10.1016/j.foodhyd.2020.106241
|
[9] |
O’SULLIVAN J J, PARK M, BEEVERS J, et al. Applications of ultrasound for the functional modification of proteins and nanoemulsion formation: A review[J]. Food Hydrocolloids,2017,71:299−310. doi: 10.1016/j.foodhyd.2016.12.037
|
[10] |
MORALES R, MARTÍNEZ K D, RUIZ-HENESTROSA V M P, et al. Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect[J]. Ultrasonics Sonochemistry,2015,26:48−55. doi: 10.1016/j.ultsonch.2015.01.011
|
[11] |
ZHENG T, LI X H, TAHA A, et al. Effect of high intensity ultrasound on the structure and physicochemical properties of soy protein isolates produced by different denaturation methods[J]. Food Hydrocolloids,2019,97:105216. doi: 10.1016/j.foodhyd.2019.105216
|
[12] |
MATSUMURA Y, SIRISON J, ISHI T, et al. Soybean lipophilic proteins-Origin and functional properties as affected by interaction with storage proteins[J]. Current Opinion in Colloid & Interface Science,2017,28:120−128.
|
[13] |
JUNG S, RICKERT D, DEAK N, et al. Comparison of Kjeldahl and Dumas methods for determining protein contents of soybean products[J]. Journal of the American Oil Chemists' Society,2003,80(12):1169. doi: 10.1007/s11746-003-0837-3
|
[14] |
MARGULIS M, MARGULIS I. Calorimetric method for measurement of acoustic power absorbed in a volume of a liquid[J]. Ultrasonics Sonochemistry,2003,10(6):343−345. doi: 10.1016/S1350-4177(03)00100-7
|
[15] |
WU D, WU C, MA W C, et al. Effects of ultrasound treatment on the physicochemical and emulsifying properties of proteins from scallops (Chlamys farreri)[J]. Food Hydrocolloids,2019,89:707−714. doi: 10.1016/j.foodhyd.2018.11.032
|
[16] |
TIAN R, FENG J R, HUANG G, et al. Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates[J]. Ultrasonics Sonochemistry,2020,68:105202. doi: 10.1016/j.ultsonch.2020.105202
|
[17] |
KATO A, NAKAI S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins[J]. Biochimica et Biophysica acta (BBA)-Protein Structure,1980,624(1):13−20. doi: 10.1016/0005-2795(80)90220-2
|
[18] |
LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry,1951,193:265−275. doi: 10.1016/S0021-9258(19)52451-6
|
[19] |
REN C, XIONG W F, LI J, et al. Comparison of binding interactions of cyanidin-3-O-glucoside to β-conglycinin and glycinin using multi-spectroscopic and thermodynamic methods[J]. Food Hydrocolloids,2019,92:155−162. doi: 10.1016/j.foodhyd.2019.01.053
|
[20] |
NAZARI B, MOHAMMADIFAR M A, SHOJAEE-ALIABADI S, et al. Effect of ultrasound treatments on functional properties and structure of millet protein concentrate[J]. Ultrasonics Sonochemistry,2018,41:382−388. doi: 10.1016/j.ultsonch.2017.10.002
|
[21] |
JAMDAR S, HARIKUMAR P. A rapid autolytic method for the preparation of protein hydrolysate from poultry viscera[J]. Bioresource Technology,2008,99(15):6934−6940. doi: 10.1016/j.biortech.2008.01.023
|
[22] |
WHITBY C P, FORNASIERO D, RALSTON J. Effect of adding anionic surfactant on the stability of Pickering emulsions[J]. Journal of Colloid and Interface Science,2009,329(1):173−181. doi: 10.1016/j.jcis.2008.09.056
|
[23] |
SUI X N, ZHANG T Y, JIANG L Z. Soy protein: Molecular structure revisited and recent advances in processing technologies[J]. Annual Review of Food Science and Technology,2020,12:119−147.
|
[24] |
O'SULLIVAN J, MURRAY B, FLYNN C, et al. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins[J]. Food hydrocolloids,2016,53:141−154. doi: 10.1016/j.foodhyd.2015.02.009
|
[25] |
O'SULLIVAN J, ARELLANO M, PICHOT R, et al. The effect of ultrasound treatment on the structural, physical and emulsifying properties of dairy proteins[J]. Food Hydrocolloids,2014,42:386−396. doi: 10.1016/j.foodhyd.2014.05.011
|
[26] |
JACKSON M, MANTSCH H H. The use and misuse of FTIR spectroscopy in the determination of protein structure[J]. Critical reviews in Biochemistry and Molecular biology,1995,30(2):95−120. doi: 10.3109/10409239509085140
|
[27] |
VERA A, VALENZUELA M, YAZDANI-PEDRAM M, et al. Conformational and physicochemical properties of quinoa proteins affected by different conditions of high-intensity ultrasound treatments[J]. Ultrasonics Sonochemistry,2019,51:186−196. doi: 10.1016/j.ultsonch.2018.10.026
|
[28] |
ZHAO J, HE J, DANG Y L, et al. Ultrasound treatment on the structure of goose liver proteins and antioxidant activities of its enzymatic hydrolysate[J]. Journal of Food Biochemistry,2020,44(1):e13091.
|
[29] |
XU B, YUAN J, WANG L, et al. Effect of multi-frequency power ultrasound (MFPU) treatment on enzyme hydrolysis of casein[J]. Ultrasonics Sonochemistry,2020,63:104930. doi: 10.1016/j.ultsonch.2019.104930
|
[30] |
MA X B, HOU F R, ZHAO H H, et al. Conjugation of soy protein isolate (SPI) with pectin by ultrasound treatment[J]. Food Hydrocolloids,2020,108:106056. doi: 10.1016/j.foodhyd.2020.106056
|
[31] |
LI K, FU L, ZHAO Y Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids,2020,98:105275. doi: 10.1016/j.foodhyd.2019.105275
|
[32] |
ZOU H N, ZHAO N, SUN S, et al. High-intensity ultrasonication treatment improved physicochemical and functional properties of mussel sarcoplasmic proteins and enhanced the stability of oil-in-water emulsion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,589:124463. doi: 10.1016/j.colsurfa.2020.124463
|
[33] |
WANG J Y, YANG Y L, TANG X Z, et al. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein[J]. Ultrasonics Sonochemistry,2017,38:225−233. doi: 10.1016/j.ultsonch.2017.03.018
|
[34] |
WANG F, ZHANG Y Z, XU L, et al. An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities[J]. LWT,2020,127:109348. doi: 10.1016/j.lwt.2020.109348
|
[35] |
XIONG W F, WANG Y T, ZHANG C L, et al. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties[J]. Ultrasonics Sonochemistry,2016,31:302−309. doi: 10.1016/j.ultsonch.2016.01.014
|
[36] |
WEN Q H, TU Z C, ZHANG L, et al. Effect of high intensity ultrasound on the gel and structural properties of Ctenopharyngodon idellus myofibrillar protein[J]. Journal of Food Biochemistry,2017,41(1):e12288. doi: 10.1111/jfbc.12288
|
[37] |
LI Y H, CHENG Y, ZHANG Z L, et al. Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics[J]. Ultrasonics Sonochemistry,2020,69:105240. doi: 10.1016/j.ultsonch.2020.105240
|
[38] |
ZHANG M C, LI F F, DIAO X P, et al. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles[J]. Meat Science,2017,133:10−18. doi: 10.1016/j.meatsci.2017.05.019
|
[39] |
CAI L, ZHANG W D, CAO A L, et al. Effects of ultrasonics combined with far infrared or microwave thawing on protein denaturation and moisture migration of Sciaenops ocellatus (red drum)[J]. Ultrasonics Sonochemistry,2019,55:96−104. doi: 10.1016/j.ultsonch.2019.03.017
|
[40] |
LI Z Y, WANG J Y, ZHENG B D, et al. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates[J]. Ultrasonics Sonochemistry,2020,65:105063. doi: 10.1016/j.ultsonch.2020.105063
|
[41] |
KHATKAR A B, KAUR A, KHATKAR S K, et al. Characterization of heat-stable whey protein: Impact of ultrasound on rheological, thermal, structural and morphological properties[J]. Ultrasonics Sonochemistry,2018,49:333−342. doi: 10.1016/j.ultsonch.2018.08.026
|
[42] |
LIU R, LIU Q, XIONG S B, et al. Effects of high intensity unltrasound on structural and physicochemical properties of myosin from silver carp[J]. Ultrasonics Sonochemistry,2017,37:150−157. doi: 10.1016/j.ultsonch.2016.12.039
|
[43] |
ARREDONDO-PARADA I, TORRES-ARREOLA W, SUÁREZ-JIMÉNEZ G M, et al. Effect of ultrasound on physicochemical and foaming properties of a protein concentrate from giant squid (Dosidicus gigas) mantle[J]. LWT,2020,121:108954. doi: 10.1016/j.lwt.2019.108954
|
[44] |
GÜLSEREN İ, GÜZEY D, BRUCE B D, et al. Structural and functional changes in ultrasonicated bovine serum albumin solutions[J]. Ultrasonics Sonochemistry,2007,14(2):173−183. doi: 10.1016/j.ultsonch.2005.07.006
|
[45] |
PAN M M, XU F R, WU Y, et al. Application of ultrasound-assisted physical mixing treatment improves in vitro protein digestibility of rapeseed napin[J]. Ultrasonics Sonochemistry,2020,67:105136. doi: 10.1016/j.ultsonch.2020.105136
|
[46] |
ZHANG Z L, WANG Y, JIANG H, et al. Effect of dual-frequency ultrasound on the formation of lysinoalanine and structural characterization of rice dreg protein isolates[J]. Ultrasonics Sonochemistry,2020,67:105124. doi: 10.1016/j.ultsonch.2020.105124
|
[47] |
ZHANG C, LI X A, WANG H, et al. Ultrasound-assisted immersion freezing reduces the structure and gel property deterioration of myofibrillar protein from chicken breast[J]. Ultrasonics Sonochemistry,2020,67:105137. doi: 10.1016/j.ultsonch.2020.105137
|
[48] |
DABBOUR M, HE R, MINTAH B, et al. Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action[J]. Ultrasonics Sonochemistry,2019,58:104625. doi: 10.1016/j.ultsonch.2019.104625
|
[49] |
DE FIGUEIREDO FURTADO G, MANTOVANI R A, CONSOLI L, et al. Structural and emulsifying properties of sodium caseinate and lactoferrin influenced by ultrasound process[J]. Food Hydrocolloids,2017,63:178−188. doi: 10.1016/j.foodhyd.2016.08.038
|
[50] |
ZOU Y, XU P P, WU H H, et al. Effects of different ultrasound power on physicochemical property and functional performance of chicken actomyosin[J]. International Journal of Biological Macromolecules,2018,113:640−647. doi: 10.1016/j.ijbiomac.2018.02.039
|
[51] |
SOBRAL P A, PALAZOLO G G, WAGNER J R. Thermal behavior of soy protein fractions depending on their preparation methods, individual interactions, and storage conditions[J]. Journal of Agricultural and Food Chemistry,2010,58(18):10092−10100. doi: 10.1021/jf101957f
|
[52] |
SUN Q X, CHEN Q, XIA X F, et al. Effects of ultrasound-assisted freezing at different power levels on the structure and thermal stability of common carp (Cyprinus carpio) proteins[J]. Ultrasonics Sonochemistry,2019,54:311−320. doi: 10.1016/j.ultsonch.2019.01.026
|
[53] |
MIR N A, RIAR C S, SINGH S. Physicochemical, molecular and thermal properties of high-intensity ultrasound (HIUS) treated protein isolates from album (Chenopodium album) seed[J]. Food Hydrocolloids,2019,96:433−441. doi: 10.1016/j.foodhyd.2019.05.052
|
[54] |
ARZENI C, MARTÍNEZ K, ZEMA P, et al. Comparative study of high intensity ultrasound effects on food proteins functionality[J]. Journal of Food Engineering,2012,108(3):463−472. doi: 10.1016/j.jfoodeng.2011.08.018
|
[55] |
JIANG S S, DING J Z, ANDRADE J, et al. Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments[J]. Ultrasonics Sonochemistry,2017,38:835−842. doi: 10.1016/j.ultsonch.2017.03.046
|
[56] |
O’DONNELL C, TIWARI B, BOURKE P, et al. Effect of ultrasonic processing on food enzymes of industrial importance[J]. Trends in Food Science & Technology,2010,21(7):358−367.
|
[57] |
SUI X N, BI S, QI B K, et al. Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: Its emulsifying property and emulsion stability[J]. Food Hydrocolloids,2017,63:727−734. doi: 10.1016/j.foodhyd.2016.10.024
|
[58] |
ZHANG H, CLAVER I P, ZHU K X, et al. The effect of ultrasound on the functional properties of wheat gluten[J]. Molecules,2011,16(5):4231−4240. doi: 10.3390/molecules16054231
|
[59] |
BA F, URSU A V, LAROCHE C, et al. Haematococcus pluvialis soluble proteins: Extraction, characterization, concentration/fractionation and emulsifying properties[J]. Bioresource Technology,2016,200:147−152. doi: 10.1016/j.biortech.2015.10.012
|
[60] |
JIN J, MA H L, WANG K, et al. Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal[J]. Ultrasonics Sonochemistry,2015,24:55−64. doi: 10.1016/j.ultsonch.2014.12.013
|
1. |
汪芸萱,应勇,黄丽,满念薇,徐玉玲,张军涛,许承志. 蚕丝蛋白的体外自组装动力学行为研究. 广州化工. 2024(23): 25-27+41 .
![]() |