CHANG Yu, ZHENG Yimei, LUO Biying, et al. Application of Food Grade Complexes in the Delivery of Bioactive Substances[J]. Science and Technology of Food Industry, 2022, 43(13): 389−399. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060017.
Citation: CHANG Yu, ZHENG Yimei, LUO Biying, et al. Application of Food Grade Complexes in the Delivery of Bioactive Substances[J]. Science and Technology of Food Industry, 2022, 43(13): 389−399. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060017.

Application of Food Grade Complexes in the Delivery of Bioactive Substances

More Information
  • Received Date: June 02, 2021
  • Available Online: April 24, 2022
  • Bioactive substances are good raw materials for functional food development due to their anti-tumor, anti-inflammatory, antioxidant and hypolipidemic activities, but most of them are easy to decompose in the process of production, processing and storage. To address this problem, food-grade delivery systems have been designed around proteins, polysaccharides and polyphenols, forming complexes that alter the functional and nutritional properties of foods. In this paper, the research progress of conjugation method, characterization and functional properties of binary and ternary food-grade complexes with different functional properties prepared from proteins, polysaccharides, polyphenols are reviewed, the main type of complexes as carriers and its application in bioactive substances transfer system are summarized, and the interaction between delivery system and human gastrointestinal tract are also summarized. The main problems to be paid attention to in preparation and analysis of complex as delivery system are emphasized and its application prospect is forecasted.
  • [1]
    舒心, 郭擎, 高彦祥. 槲皮素及其传递体系的研究进展[J/OL]. 食品科学: 1−16 [2021-06-01].

    SHU X, GUO, GAO Y X. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment[J/OL]. Food Science: 1−16 [2021-06-01].
    [2]
    BORDENAVE N, HAMAKERBRUCE R, FERRUZZIMARRIO G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods[J]. Food & Function,2014,5(1):18−34.
    [3]
    BAO C, JIANG P, CHAI J J, et al. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models[J]. Food Research International,2019,120:130−140. doi: 10.1016/j.foodres.2019.02.024
    [4]
    HE W Y, TIAN L, ZHANG S S, et al. A novel method to prepare protein-polysaccharide conjugates with high grafting and low browning: Application in encapsulating curcumin[J]. LWT,2021,145:111349. doi: 10.1016/j.lwt.2021.111349
    [5]
    FAN Y T, LIU Y X, GAO L Y, et al. Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate[J]. Food Chemistry,2018,265:283−291.
    [6]
    MAJID N, MEHDI V. Maillard conjugate-based delivery systems for the encapsulation, protection, and controlled release of nutraceuticals and food bioactive ingredients: A review[J]. Food Hydrocolloids,2020,100:105389. doi: 10.1016/j.foodhyd.2019.105389
    [7]
    CHAUDHURI J, BAINS Y, GUHA S, et al. The role of advanced glycation end products in aging and metabolic diseases: Bridging association and causality[J]. Cell Metabolism,2018,28(3):337−352. doi: 10.1016/j.cmet.2018.08.014
    [8]
    GIANFRANCO S U, FRANCESCA I, FRANCESCO P, et al. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin[J]. Biomacromolecules,2009,10(7):1923−1930. doi: 10.1021/bm900325t
    [9]
    ZHANG Q, ZHOU Y Y, YUE W T, et al. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds[J]. Trends in Food Science & Technology,2021,169(40):169−196.
    [10]
    陈晨, 陈复生, 刘伯业. 蛋白质-多糖复合物研究进展[J]. 食品工业,2019,40(2):225−229. [CHEN C, CHEN F S, LIU B Y. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment[J]. Food Industry,2019,40(2):225−229.

    CHEN C, CHEN F S, LIU B Y. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment[J]. Food Industry, 2019, 40(2): 225-229.
    [11]
    CAROLE E, GUYZUBER S, HERLIN C, et al. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications[J]. Carbohydrate Polymers,2011,85(3):469−489. doi: 10.1016/j.carbpol.2011.03.019
    [12]
    ARIMA D S, ALEXIS R, PAUL V M. The influence of degree of methoxylation on the emulsifying and heat stabilizing activity of whey protein-pectin conjugates[J]. Food Hydrocolloids,2019,96:54−64. doi: 10.1016/j.foodhyd.2019.05.012
    [13]
    MENF J, KANG T T, WANG H F, et al. Physicochemical properties of casein-dextran nanoparticles prepared by controlled dry and wet heating[J]. International Journal of Biological Macromolecules,2018,107:2604−2610. doi: 10.1016/j.ijbiomac.2017.10.140
    [14]
    WANG W D, LI C, BIN Z, et al. Physicochemical properties and bioactivity of whey protein isolate-inulin conjugates obtained by Maillard reaction[J]. International Journal of Biological Macromolecules,2020,150:326−335. doi: 10.1016/j.ijbiomac.2020.02.086
    [15]
    FENG J, WU S S, WANG H, et al. Improved bioavailability of curcumin in ovalbumin-dextran nanogels prepared by Maillard reaction[J]. Journal of Functional Foods,2016,27:55−68. doi: 10.1016/j.jff.2016.09.002
    [16]
    CHEN W J, MA X B, WANG W J, et al. Preparation of modified whey protein isolate with gum acacia by ultrasound Maillard reaction[J]. Food Hydrocolloids,2019,95:298−307. doi: 10.1016/j.foodhyd.2018.10.030
    [17]
    ZHANG Z Y, WANG X B, YU J. et al. Freeze-thaw stability of oil-in-water emulsions stabilized by soy protein isolate-dextran conjugates[J]. LWT-Food Science and Technology,2017,78:241−249. doi: 10.1016/j.lwt.2016.12.051
    [18]
    SAHARB T, HAMED M, TAN C P, et al. Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion[J]. Food Hydrocolloids,2016,56:405−416. doi: 10.1016/j.foodhyd.2015.12.033
    [19]
    肖军霞, 黄国清, 孙燕婷, 等. 一种以大豆分离蛋白和壳聚糖为壁材的大蒜油微胶囊及其制备方法和应用: 中国, ZL20121024999.8[P]. 2013.

    XAO J X, HUANG G Q, SUN Y T, et al. Method for the preparation of garic oil microcapsules by using soybean protein isolate and chitosan as wal materals an itsaplitation: China, ZL201210249889. 8[P]. 2013.
    [20]
    NIU F G, HU D M, GU F N, et al. Preparation of ultra-long stable ovalbumin/sodium carboxymethylcellulose nanoparticle and loading properties of curcumin[J]. Carbohydrate Polymers,2021,271:118451. doi: 10.1016/j.carbpol.2021.118451
    [21]
    FREITAS V D, CARVALHO E, MATEUS N. Study of carbohydrate influence on protein-tannin aggregation by nephelome-try[J]. Food Chemistry,2003,81(4):503−509. doi: 10.1016/S0308-8146(02)00479-X
    [22]
    YANG J S, XIN Y J, HE W. Research progress on chemical modification of alginate: A review[J]. Carbohydrate Polymers,2011,84(1):33−39. doi: 10.1016/j.carbpol.2010.11.048
    [23]
    ALYAWISH A, CHEVALT I, JASNIEWSKI J, et al. Enzymatic synthesis of chitosan derivatives and their potential applications[J]. Journal of Molecular Catalysis B, Enzymatic,2015,112:25−39. doi: 10.1016/j.molcatb.2014.10.014
    [24]
    VEMANA G, NAYMUL K, XIE L H, et al. In vitro study of bioaccessibility, antioxidant, and α-glucosidase inhibitory effect of pelargonidin-3-O-glucoside after interacting with beta-lactoglobulin and chitosan/pectin[J]. International Journal of Biological Macromolecules,2020,154(5):380−389.
    [25]
    JYOTI M, MUNISH A, PRADEEP K, et al. Improved antioxidant, antimicrobial and anticancer activity of naringenin on conjugation with pectin[J]. 3 Biotech,2019,9(8):312. doi: 10.1007/s13205-019-1835-0
    [26]
    LI S Y, LEI D, ZHU Z Z, et al. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment[J]. Ultrasonics Sonochemistry,2021,74(prepublish):105568.
    [27]
    HU Q B, LUO Y C. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications[J]. Carbohydrate Polymers,2016,151(5):624−639.
    [28]
    LI R Y, PENG S F, ZHANG R J, et al. Formation and characterization of oil-in-water emulsions stabilized by polyphenol-polysaccharide complexes: Tannic acid and β-glucan[J]. Food Research International,2019,148:333−342.
    [29]
    WU S, WANG T, HU Q B, et al. Partition and stability of folic acid and caffeic acid in hollow zein particles coated with chi-tosan[J]. International Journal of Biological Macromolecules,2021,183:2282−2292. doi: 10.1016/j.ijbiomac.2021.05.216
    [30]
    罗舒菡. 乳清蛋白-多酚复合物及壳聚糖-多酚复合物的制备、表征及对乳液油脂体外消化的影响[D]. 南昌: 南昌大学, 2020

    LUO S H. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment[D]. Nanchang: Nanchang University, 2020.
    [31]
    ROHN S. Possibilities and limitations in the analysis of covalent interactions between phenolic compounds and proteins[J]. Food Research International,2014,65:13−19. doi: 10.1016/j.foodres.2014.05.042
    [32]
    OZDAL T, ESRA C, ALTAY F. A review on protein-phenolic interactions and associated changes[J]. Food Research International,2013,51(2):954−970. doi: 10.1016/j.foodres.2013.02.009
    [33]
    杨慧, 曲也直, 高雅然, 等. 植物多酚-蛋白质复合物生物活性及应用研究进展[J/OL]. 食品科学: 1−13 [2021-09-12]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210524.0900.020.html.

    YANG H, QU Y Z, GAO Y R, et al. Research advances in understanding the biological activities and applications of polyphenol-protein complexes[J/OL]. Food Science: 1−13 [2021-09-12]. http://kns.cnki.net/kcms/detail/11.2206.TS.20210524.0900.020.html.
    [34]
    KROLL J, RAWEL H M, RONH S. Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds[J]. Japanese Society for Food Science and Technology,2003,9(3):205−218.
    [35]
    BOURVELLEC C L E, RENAR D C. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms[J]. Critical Reviews in Food Science and Nutrition,2012,52(3):213−248. doi: 10.1080/10408398.2010.499808
    [36]
    WU X L, LU Y Q, XU H X, et al. Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols[J]. Food Chemistry,2018,256:427−434. doi: 10.1016/j.foodchem.2018.02.158
    [37]
    XU H X, ZHANG T T, LU Y Q, et al. Effect of chlorogenic acid covalent conjugation on the allergenicity, digestibility and functional properties of whey protein[J]. Food Chemistry,2019,298:125024. doi: 10.1016/j.foodchem.2019.125024
    [38]
    LIU F G, WANG D, SUN C X, et al. Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein–polyphenol conjugates[J]. Food Chemistry,2016,205(5):129−139.
    [39]
    CHEN Y S, HHANG F H, XIE B J, et al. Fabrication and characterization of whey protein isolates- lotus seedpod proanthocyanin conjugate: Its potential application in oxidizable emulsions[J]. Food Chemistry,2021,346:128680. doi: 10.1016/j.foodchem.2020.128680
    [40]
    MOSTAFA A. Chemical structural and functional properties of whey proteins covalently modified with phytochemical compounds[J]. Journal of Food Measurement and Characterization,2019,13(4):2970−2979. doi: 10.1007/s11694-019-00217-1
    [41]
    BUDRRN G, RACHWALROSIAK D. Interactions of hydroxycinnamic acids with proteins and their technological and nutritional implications[J]. Food Reviews International,2013,29(3):217−230. doi: 10.1080/87559129.2012.751545
    [42]
    LIVERIRA A, PINTADO M. In vitro evaluation of the effects of protein-polyphenol-polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessility[J]. Food & Function,2015,6(11):3444−3453.
    [43]
    ZHAO Y, WANG X, LI D, et al. Effect of anionic polysaccharides on conformational changes and antioxidant properties of protein-polyphenol binary covalently-linked complexes[J]. Process Biochemistry,2020,89:89−97. doi: 10.1016/j.procbio.2019.10.021
    [44]
    YAN Y, ZHU Q M, DIAO C R, et al. Enhanced physicochemical stability of lutein-enriched emulsions by polyphenol-protein-polysaccharide conjugates and fat-soluble antioxidant[J]. Food Hydrocolloids,2020,101(C):105447−105447.
    [45]
    OLIVERIRA F C D, CORMBRA J S D R, OLIVERIA D E B, et al. Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review[J]. Critical Reviews in Food Science and Nutrition,2016,56(7):1108−1125. doi: 10.1080/10408398.2012.755669
    [46]
    陈丽霞, 赵志毅, 刘明霞, 等. 毛细管电泳分析中手性化合物的定性检测[J]. 色谱,2020,38(9):1038−1045. [CHEN L X, ZHAO Z Y, LIU M X, et al. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment[J]. Chromatographic,2020,38(9):1038−1045.

    CHEN L X, ZHAO Z Y, LIU M X, et al. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment[J]. Chromatographic, 2020, 38(9): 1038-1045.
    [47]
    NURFAIDAH, METUSALACH M. Analysis of molecular weight albumin concentrate on various types of freshwater fish using SDS-page electrophoresis method[J]. IOP Conference Series: Earth and Environmental Science,2020,564(1):012057. doi: 10.1088/1755-1315/564/1/012057
    [48]
    MA X B, HOU F R, ZHAO H H, et al. Conjugation of soy protein isolate (SPI) with pectin by ultrasound treatment[J]. Food Hydrocolloids,2020,108(prepublish):106056.
    [49]
    ZHU Y, FANG Q. Analytical detection techniques for droplet microfluidics-A review[J]. Analytica Chimica Acta,2013,787:24−35. doi: 10.1016/j.aca.2013.04.064
    [50]
    RIZZRARELLI P, CARROCCIO S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers[J]. Analytica Chimica Acta,2014,808:18−43. doi: 10.1016/j.aca.2013.11.001
    [51]
    LIU F G, MA C, MCCLEMENTS D J, et al. Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of β-carotene emulsions[J]. Food Hydrocolloids,2016,61:578−588. doi: 10.1016/j.foodhyd.2016.05.031
    [52]
    YI J, FAN Y T, ZHANG Y Z, et al. Characterization of catechin-α-lactalbumin conjugates and the improvement in β-carotene retention in an oil-in-water nanoemulsion[J]. Food Chemistry,2016,205:73−80. doi: 10.1016/j.foodchem.2016.03.005
    [53]
    KIM Y R, KANG H S. Multi-residue determination of twenty aminoglycoside antibiotics in various food matrices by dispersive solid phase extraction and liquid chromatography-tandem mass spectrometry[J]. Food Control,2021,130:108374. doi: 10.1016/j.foodcont.2021.108374
    [54]
    DAI L, LI R R, WEI Y, et al. Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and in vitro release of curcumin[J]. Food Hydrocolloids,2018,77(5):617−628.
    [55]
    WANG Y Y, ZHANG A Q, WANG X B, et al. The radiation assisted-Maillard reaction comprehensively improves the freeze-thaw stability of soy protein-stabilized oil-in-water emulsions[J]. Food Hydrocolloids,2020,103(C):105684−105684.
    [56]
    WEN C T, ZHANG J X, QIN W, et al. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions[J]. Food Chemistry,2020,331:127374. doi: 10.1016/j.foodchem.2020.127374
    [57]
    ZHA F C, YANG Z Y, RAOO J J, et al. Gum arabic-mediated synthesis of glyco-pea protein hydrolysate via Maillard reaction improves solubility, flavor profile, and functionality of plant protein[J]. Journal of Agricultural and Food Chemistry,2019,67(36):10195−10206. doi: 10.1021/acs.jafc.9b04099
    [58]
    ZHONG L, MA N, WU Y L, et al. Gastrointestinal fate and antioxidation of β-carotene emulsion prepared by oat protein isolate-Pleurotus ostreatus β-glucan conjugate[J]. Carbohydrate Polymers,2019,221:10−20. doi: 10.1016/j.carbpol.2019.05.085
    [59]
    ARIMA D S, SERVEH S, WAHYU W, et al. Improved heat stability of whey protein isolate stabilized emulsions via dry heat treatment of WPI and low methoxyl pectin: Effect of pectin concentration, pH, and ionic strength[J]. Food Hydrocolloids,2017,63:716−726. doi: 10.1016/j.foodhyd.2016.10.025
    [60]
    WEI Z H, YANG W, FAN R, et al. Evaluation of structural and functional properties of protein-EGCG complexes and their ability of stabilizing a model β-carotene emulsion[J]. Food Hydrocolloids,2015,45:337−350. doi: 10.1016/j.foodhyd.2014.12.008
    [61]
    JUNG J Y, WICKER L. Laccase mediated conjugation of sugar beet pectin and the effect on emulsion stability[J]. Food Hydrocolloids,2012,28(1):168−173. doi: 10.1016/j.foodhyd.2011.12.021
    [62]
    SCHIEE C, SANCHEZ C, BANON S D, et al. Structure and technofunctional properties of protein-polysaccharide complexes: A review[J]. Critical Reviews in Food Science and Nutrition,1998,38(8):689−753. doi: 10.1080/10408699891274354
    [63]
    BASU A, KUNDURU K R, ABTWE E, et al. Polysaccharide-based conjugates for biomedical applications[J]. Bioconjugate Chemistry,2015,26(8):1396−412. doi: 10.1021/acs.bioconjchem.5b00242
    [64]
    QU W J, ZHANG X X, HAN X, et al. Structure and functional characteristics of rapeseed protein isolate-dextran conjugates[J]. Food Hydrocolloids,2018,82:329−337. doi: 10.1016/j.foodhyd.2018.03.039
    [65]
    IBRAHIM K, PENG J J, JIA Y Y, et al. Anti-glycation and anti-hardening effects of microencapsulated mulberry polyphenols in high-protein-sugar ball models through binding with some glycation sites of whey proteins[J]. International Journal of Biological Macromolecules,2019,123:10−19. doi: 10.1016/j.ijbiomac.2018.11.016
    [66]
    NASROLLAHZADEH F, VARIDI M, KOOCHEKI A, et al. Effect of microwave and conventional heating on structural, functional and antioxidant properties of bovine serum albumin-maltodextrin conjugates through Maillard reaction[J]. Food Research International (Ottawa, Ont), 2017, 100(Pt 2): 289−297.
    [67]
    FAN Y T, YI J, ZHANG Y Z, et al. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity[J]. Food Chemistry,2018,239:1210−1218. doi: 10.1016/j.foodchem.2017.07.075
    [68]
    LEE D S, WOO J Y, AHN C B, et al. Chitosan-hydroxycinnamic acid conjugates: Preparation, antioxidant and antimicrobial activity[J]. Food Chemistry,2014,148:97−104. doi: 10.1016/j.foodchem.2013.10.019
    [69]
    AHMED D A, ELMAKSOUD A, ISMAIL H, et al. Adding functionality to milk-based protein: Preparation, and physico-chemical characterization of β-lactoglobulin-phenolic conjugates[J]. Food Chemistry,2018,241(5):281−289.
    [70]
    LESMES U, MOCLEMENTS D J. Structure-function relationships to guide rational design and fabrication of particulate food delivery systems[J]. Trends in Food Science & Technology,2009,20(10):448−457.
    [71]
    WANG C N, LIU Z J, XU G R, et al. BSA-dextran emulsion for protection and oral delivery of curcumin[J]. Food Hydrocolloids,2016,61:11−19. doi: 10.1016/j.foodhyd.2016.04.037
    [72]
    GUMUS C E, DAVIDOVPARDO G, MOCLEMENMENTS D J. Lutein-enriched emulsion-based delivery systems: Impact of Maillard conjugation on physicochemical stability and gastrointestinal fate[J]. Food Hydrocolloids,2016,60:38−49. doi: 10.1016/j.foodhyd.2016.03.021
    [73]
    HU Q H, WU Y L, ZHONG L, et al. In vitro digestion and cellular antioxidant activity of β-carotene-loaded emulsion stabilized by soy protein isolate-Pleurotus eryngii polysaccharide conjugates[J]. Food Hydrocolloids,2021,112:106340. doi: 10.1016/j.foodhyd.2020.106340
    [74]
    DENG W, LI J, YAO P, et al. Green preparation process, characterization and antitumor effects of doxorubicin-BSA-dextran nanoparticles[J]. Macromolecular Bioscience,2010,10(10):1224−1234. doi: 10.1002/mabi.201000125
    [75]
    SONI K S, DESALE S S, BRONICH T K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society,2016,240:109−126. doi: 10.1016/j.jconrel.2015.11.009
    [76]
    JIN B, ZHOU X S, CHEN C Y, et al. Preparation, characterization and in vitro evaluation of theophylline nanoparticles prepared with dextran-conjugated soy protein[J]. Tropical Journal of Pharmaceutical Research,2015,14(8):1323−1332. doi: 10.4314/tjpr.v14i8.2
    [77]
    GUO H J, ZHANG D R, LI C Y, et al. Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin[J]. International Journal of Pharmaceutics,2013,458(1):31−38. doi: 10.1016/j.ijpharm.2013.10.020
    [78]
    MENG J, KANG T T, WANG H F, et al. Physicochemical properties of casein-dextran nanoparticles prepared by controlled dry and wet heating[J]. International Journal of Biological Macromolecules,2018,107(5):2604−2610.
    [79]
    LII J, YU S Y, YAO P, et al. Lysozyme-dextran core-shell nanogels prepared via a green process[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2008,24(7):3486−3492. doi: 10.1021/la702785b
    [80]
    YAO M F, MOCLEMENTS D J, XIAO H. Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems[J]. Current Opinion in Food Science,2015,2:14−19. doi: 10.1016/j.cofs.2014.12.005
    [81]
    LIANG K, NG S J, LEE F, et al. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels[J]. Acta Biomaterialia,2016,33:142−152. doi: 10.1016/j.actbio.2016.01.011
    [82]
    杨伟, 李波, 徐响, 等. 蛋白质多酚多糖三元复合物的结构和功能特性研究进展[J]. 食品工业科技,2017,38(17):329−334. [YANG W, LI B, XU X, et al. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment[J]. Food Industry Technology,2017,38(17):329−334.

    YANG W, LI B, XU X, et al. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment[J]. Food Industry Technology, 2017, 38(17): 329-334.
    [83]
    TIMLENA Y P, WANG B, ADHIKARI R, et al. Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review[J]. Food Hydrocolloids,2017,69:369−381. doi: 10.1016/j.foodhyd.2017.03.007
    [84]
    YUAN Y, KONG Z Y, SUN Y E, et al. Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery[J]. LWT-Food Science and Technology,2017,75:171−179. doi: 10.1016/j.lwt.2016.08.045
    [85]
    JIA C S, CAO D D, SU J I, et al. Whey protein isolate conjugated with xylo-oli gosaccharides via maillard reaction: Characterization, antioxidant capacity, and application for lycopene microenca psulation[J]. LWT-Food Science and Technology,2020,118:108837. doi: 10.1016/j.lwt.2019.108837
    [86]
    YUN K Y L, YOONHYUK C. Microencapsulation of a maca leaf polyphenol extract in mixture of maltodextrin and neutral polysaccharides extracted from maca roots[J]. International Journal of Biological Macromolecules,2020,150(5):546−558.
    [87]
    CHEN X, MOCLEMENTS D J, ZHU Y, et al. Gastrointestinal fate of fluid and gelled nutraceutical emulsions: Impact on proteolysis, lipolysis, and quercetin bioaccessibility[J]. Journal of Agricultural and Food Chemistry,2018,66(34):9087−9096. doi: 10.1021/acs.jafc.8b03003
    [88]
    MCCLEMENTS D J. Food emulsions: Principles, practices, and techniques, Third Edition[M]. CRC Press: 2015-11-05.
    [89]
    WANG X, CHEN Y, DAHMANI F Z, et al. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel.[J]. Biomaterials,2014,35(26):7654−7665. doi: 10.1016/j.biomaterials.2014.05.053
    [90]
    CHANG Y G, MCCLEMENTS D J. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80[J]. Food Hydrocolloids,2016,61:92−101. doi: 10.1016/j.foodhyd.2016.04.047
    [91]
    SING H, SARKER A. Behaviour of protein-stabilised emulsions under various physiological conditions[J]. Advances in Colloid and Interface Science,2021,165(1):47−57.
    [92]
    FENG J L, QI J R, YIN S W, et al. Fabrication and characterization of stable soy β-conglycinin-dextran core-shell nanogels prepared via a self-assembly approach at the isoelectric point[J]. Journal of Agricultural and Food Chemistry,2015,63(26):6075−6083. doi: 10.1021/acs.jafc.5b01778
    [93]
    LESMES S U, MCCLEMENTS D J. Controlling lipid digestibility: Response of lipid droplets coated by β-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions[J]. Food Hydrocolloids,2011,26(1):221−230.
    [94]
    DAVIDOVPARDO G, PEREZCIORDIA S, MARIN-ARROYO M R, et al. Improving resveratrol bioaccessibility using biopolymer nanoparticles and complexes: Impact of protein carbohydrate Maillard conjugation[J]. Journal of Agricultural and Food Chemistry,2015,63(15):3915−3923. doi: 10.1021/acs.jafc.5b00777
    [95]
    LAMTI Y J, YOKOYAMA W, et al. Controlled release of B-carotene in β-lactoglobulin-dextran-conjugated nanoparticles in vitro digestion and transport with CaCO-2 monolayers[J]. Journal of Agricultural and Food Chemistry,2014,62(35):8900−8907. doi: 10.1021/jf502639k
    [96]
    LI Y, ARRANZ E, CURI A, et al. Mucus interactions with liposomes encapsulating bioactives: Interfacial tensiometry and cellular uptake on CaCO-2 and cocultures of CaCO-2/HT29-MTX[J]. Food Research International,2017,92:128−137. doi: 10.1016/j.foodres.2016.12.010
  • Cited by

    Periodical cited type(6)

    1. 王雅利,赵楠,葛黎红,赖海梅,杨梦露,黄玉立,梅源,刘达玉,朱永清. 酵母菌对发酵萝卜品质的影响. 食品与发酵工业. 2024(24): 68-75 .
    2. 刘艳秋,范梓琪,常凯,毛迪锐,徐澎,耿业业. 玫瑰面包啤酒生产工艺优化. 北华大学学报(自然科学版). 2023(01): 134-140 .
    3. 颜子豪,孟庆芳,陈江魁,孙嘉怡. 冰糖红梨酒发酵工艺优化及香气成分分析. 食品工业科技. 2022(06): 228-235 . 本站查看
    4. 李夏,谢光杰,王东鹏,徐旻. 发酵条件对高山葡萄石斛酒品质的影响研究. 食品安全质量检测学报. 2022(12): 4036-4042 .
    5. 赵彤,王宣,吴黎明,延莎,卢焕仙,赵洪木,薛晓锋. 发酵蜂产品研究进展. 食品工业科技. 2022(14): 461-466 . 本站查看
    6. 刁体伟,陈晓姣,冷银江,魏鑫,赖晓琴,马懿. 植物源多酚对梨酒抗氧化能力及其感官品质的影响. 食品与发酵工业. 2022(23): 93-101 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (324) PDF downloads (49) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return