ZHU Mou, GONG Xiaochen, LIU Dongyang, et al. Effect of Ginsenoside Rb1 on the Disorder of Glucose and Lipid Metabolism in Type 2 Diabetic Mice[J]. Science and Technology of Food Industry, 2022, 43(3): 367−373. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050272.
Citation: ZHU Mou, GONG Xiaochen, LIU Dongyang, et al. Effect of Ginsenoside Rb1 on the Disorder of Glucose and Lipid Metabolism in Type 2 Diabetic Mice[J]. Science and Technology of Food Industry, 2022, 43(3): 367−373. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050272.

Effect of Ginsenoside Rb1 on the Disorder of Glucose and Lipid Metabolism in Type 2 Diabetic Mice

More Information
  • Received Date: May 30, 2021
  • Available Online: December 07, 2021
  • Objective: To study the effects of ginsenoside Rb1 on glucose and lipid metabolism disorder, oxidative stress and inflammatory reaction in type 2 diabetic rats. Methods: The rat model of type 2 diabetes was induced by high glucose and high fat diet and intraperitoneal injection of streptozotocin (STZ). Rats were randomly divided into blank control group, model group, ginsenoside Rb1 high, medium and low dose groups (45, 30 and 15 mg/kg) and positive control group. During the experiment, the changes of body weight and fasting blood glucose (FBG) were recorded; Oral glucose tolerance test (OGTT) was performed 8 weeks after administration. The serum insulin (INS), HOMA-IR, MDA, SOD, GSH-Px and CAT in liver tissue were measured by enzyme-linked immunosorbent assay (ELISA), and tumor necrosis factor α (TNF-α ) and interleukin-6 (IL-6) levels in serum and liver tissue were measured. Results: Compared with the model group, ginsenoside Rb1 group could reduce the fasting blood glucose, insulin level and insulin resistance index (P<0.05); The contents of TC, TG and LDL-C in serum were significantly decreased and the content of HDL-C was significantly increased in middle and high dose groups (P<0.01). The abnormal degree of liver index was significantly relieved, the content of ALT and AST decreased significantly, the level of MDA decreased effectively, and the activities of CAT, SOD and GSH-Px increased significantly. Proinflammatory factor TNF-α and IL-6 levels were significantly decreased (P<0.01). Conclusion: Ginsenoside Rb1 can effectively regulate the disorder of serum and lipid level, improve insulin resistance, enhance the body's antioxidant capacity, and reduce inflammation in 2-diabetic rats, with medium and high doses as the best.
  • [1]
    SABICO S, AL-MASHHARAWI A, AL-DAGHRI N M, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial[J]. Clinical Nutrition (Edinburgh, Scotland),2019,38(4):1561−1569. doi: 10.1016/j.clnu.2018.08.009
    [2]
    SENTHILKUMAR G P, ANITHALEKSHMI M S, YASIR M, et al. Role of omentin 1 and IL-6 in type 2 diabetes mellitus patients with diabetic nephropathy[J]. Diabetes & Metabolic Syndrome,2018,12(1):23−26.
    [3]
    HU Z, YANG M, LIU Y, et al. Effect of Huang-Lian Jie-Du decoction on glucose and lipid metabolism in type 2 diabetes mellitus: A systematic review and meta-analysis[J]. Frontiers in Pharmacology,2021,12:648861. doi: 10.3389/fphar.2021.648861
    [4]
    田霖林. 血糖控制不佳的2型糖尿病患者加用利拉鲁肽疗效及安全性的临床观察[D]. 长春: 吉林大学, 2016.

    TIAN Linlin. Clinical observation of liraglutide efficacy and safety in patients with poor glycemic controlled type 2 diabetes[D]. Changchun: Jilin University, 2016.
    [5]
    CHEN W, WANG J, LUO Y, et al. Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue[J]. Journal of Ginseng Research,2016,40(4):351−358. doi: 10.1016/j.jgr.2015.11.002
    [6]
    QIU Z, DONG J, XUE C, et al. Liuwei Dihuang Pills alleviate the polycystic ovary syndrome with improved insulin sensitivity through PI3K/Akt signaling pathway[J]. Journal of Ethnopharmacology,2020,250:111965. doi: 10.1016/j.jep.2019.111965
    [7]
    MA S, LIANG W, YANG H, et al. Emerging technologies to achieve oral delivery of GLP-1 and GLP-1 analogs for treatment of type 2 diabetes mellitus (T2DM)[J]. Canadian Journal of Biotechnology,2017,1(1):1−10. doi: 10.24870/cjb.2017-000107
    [8]
    黄妍丽. 人参皂苷Rb1对代谢综合征小鼠糖脂代谢的干预作用及机理研究[D]. 广州: 暨南大学, 2015.

    HANG Yanli. Effect of ginsenoside Rb1 on modulating the glycolipid metabolism in a murine model of metabolic syndrome and its mechanism[D]. Guangzhou: Jinan University, 2015.
    [9]
    张志良, 王嘉睿, 赵云跃, 等. 人参皂苷Rb1对糖尿病大鼠心脏功能和心肌细胞凋亡的影响[J]. 热带医学杂志,2021,21(3):261−265,275,393. [ZHANG Zhiliang, WANG Jiarui, ZHAO Yunyue, et al. The effects of ginsenoside Rb1 on cardiac function and cardiocyte apoptosis in diabetes rat[J]. Trop Med,2021,21(3):261−265,275,393. doi: 10.3969/j.issn.1672-3619.2021.03.002
    [10]
    赵丹丹, 白颖, 吴瑞, 等. 人参皂苷Rb1对肥胖小鼠骨骼肌胰岛素抵抗及AMPK信号通路的影响[J]. 世界中医药,2019,14(4):852−858. [ZHAO Dandan, BAI Ying, WU Rui, et al. Effects of ginsenoside Rb1 on insulin resistance and AMPK signal pathway of muscular tissues of obese mice[J]. World Chinese Medicine,2019,14(4):852−858. doi: 10.3969/j.issn.1673-7202.2019.04.013
    [11]
    庞博. 人参皂苷Rb1保护糖尿病大鼠心肌损伤的尿液代谢组学研究[D]. 长春: 吉林大学, 2017

    PANG Bo. A metabonomics research on the myocardial protective effect of ginsenoside Rb1 treated diabetic rats[D]. Changchun: Jilin University, 2017.
    [12]
    王嘉睿, 李苏华, 罗艳婷, 等. SIRT1/NF-κB 通路在人参皂苷Rb1 对高糖处理的H9C2 细胞凋亡与炎症反应作用的研究[J]. 新医学,2019,50(4):61−67. [WANG Jiarui, LI Suhua, LUO Yanting, et al. Role of SIRT1/NF-κB pathway in the effect of ginsenoside Rb1 on apoptosis and inflammation of H9C2 cells treated with high glucose[J]. Journal of New Medicine,2019,50(4):61−67.
    [13]
    MCAB C, DAN X A, WEN L A, et al. Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats[J]. International Journal of Biological Macromolecules,2020,155:890−902. doi: 10.1016/j.ijbiomac.2019.11.047
    [14]
    LIU G, JIA B, LI L, et al. Stachyose improves inflammation through modulating gut microbiota of high-fat diet/streptozotocin induced type 2 diabetes in rats[J]. Molecular Nutrition & Food Research,2018,62(6):1700954.
    [15]
    LEE P S, TENG C Y, KALYANAM N, et al. Garcinol reduces obesity in high-fat-diet-fed mice by modulating gut microbiota composition[J]. Molecular Nutrition & Food Research,2019,63(2):e1800390.
    [16]
    ZENG Z, YUAN Q, YU R, et al. Ameliorative effects of probiotic Lactobacillus paracasei NL41 on insulin sensitivity, oxidative stress, and beta-cell function in a type 2 diabetes mellitus rat model[J]. Molecular Nutrition & Food Research,2019,63(22):1900457.
    [17]
    YAN S, SHI R, LI L, et al. Mannan oligosaccharide suppresses lipid accumulation and appetite in western-diet-induced obese mice via reshaping gut microbiome and enhancing short-chain fatty acids production[J]. Molecular Nutrition & Food Research,2019,63(23):1900521.
    [18]
    吴丽娜, 范晓萌, 武爽, 等. 人参皂苷Rg1调节氧化应激和炎症因子表达改善糖尿病大鼠周围神经损伤[J]. 中国免疫学杂志,2021,37(4):486−491. [WU Lina, FAN Xiaomeng, WU Shuang, et al. Ginsenoside Rg1 attenuates diabetic peripheral neuropathy in rats via antioxidant and anti-inflammatory mechanisms[J]. Chinese Journal of Immunology,2021,37(4):486−491. doi: 10.3969/j.issn.1000-484X.2021.04.020
    [19]
    YANG D, LI X, FU Y, et al. Metabolic study of ginsenoside Rg3 and glimepiride in type 2 diabetic rats by liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2021, 35(11): e9083.
    [20]
    LIU Y, DENG J, FAN D. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway[J]. Food & Function,2019,10(5):2538−2551.
    [21]
    尚文斌, 郭超, 赵娟, 等. 人参皂苷Rb1通过上调脂肪组织葡萄糖转运体促进葡萄糖消耗[J]. 中国中药杂志,2014,39(22):4448−4452. [SHANG Wenbin, GUO Chao, ZHAO Juan, et al. Ginsenoside Rb1 upregulates expressions of GLUTs to promote glucose consumption in adiopcytes[J]. China Journal of Chinese Materia Medica,2014,39(22):4448−4452.
    [22]
    ZHU Y, SU Y, ZHANG J, et al. Astragaloside IV alleviates liver injury in type 2 diabetes due to promotion of AMPK/mTOR mediated autophagy[J]. Molecular Medicine Reports, 2021, 23(6): 437.
    [23]
    YANG L, ZHANG X, LIAO M, et al. Echinacoside improves liver injury by regulating the AMPK/SIRT1 signaling pathway in db/db mice[J]. Life Sciences,2021,271(1):119237.
    [24]
    LIU H, WANG J, LIU M, et al. Antiobesity effects of ginsennoside Rg1 on 3T3-L1 preadipocytes and high fat diet induced obese mice mediated by AMPK[J]. J Nutrients,2018,10(7):830. doi: 10.3390/nu10070830
    [25]
    曹萌. 人参皂苷Rb1通过抑制JNK信号通路改善糖尿病大鼠肝脏糖脂代谢异常[J]. 中国免疫学杂志,2018,34(4):531−536, 548. [CAO Meng. Ginsenoside Rb1 ameliorates abnormal glucolipid metabolism of liver through inhibition of JNK signal pathway in diabetic rats[J]. Chinese Journal of Immunology,2018,34(4):531−536, 548. doi: 10.3969/j.issn.1000-484X.2018.04.011
    [26]
    SASIDHARAKURUP H, DIWAKAR S. Computational modelling of TNFα related pathways regulated by neuroinflammation, oxidative stress and insulin resistance in neurodegeneration[J]. Applied Network Science,2020,5(1):72. doi: 10.1007/s41109-020-00307-w
    [27]
    SUN B, JIA Y, YANG S, et al. Sodium butyrate protects against high-fat diet-induced oxidative stress in rat liver by promoting expression of nuclear factor E2-related factor 2[J]. British Journal of Nutrition,2019,122(4):1−29.
    [28]
    PANAHI Y, KHALILI N, SAHEBI E, et al. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial[J]. Inflammopharmacology,2017,25(1):25−31. doi: 10.1007/s10787-016-0301-4
    [29]
    TIMPER K, DENSON J L, STECULORUM S M, et al. IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling[J]. Cell Reports,2017,19(2):267−280. doi: 10.1016/j.celrep.2017.03.043
    [30]
    WEI X, YANG B, CHEN X, et al. Zanthoxylum alkylamides ameliorate protein metabolism in type 2 diabetes mellitus rats by regulating multiple signaling pathways[J]. Food & Function,2021,12(8):3740−3753.
  • Cited by

    Periodical cited type(18)

    1. 温雅君,王全红,杨红菊,孙志伟,刘希艳,高利文,肖志勇. 胶体金免疫层析法快速检测韭菜中腐霉利的质量分析与评价. 农药科学与管理. 2025(01): 29-33 .
    2. 杨静,方芳,沈媛,孙娟,吴仑,陈翔,贾晨,李英. 水产品中地西泮快速检测产品技术评价. 食品安全质量检测学报. 2025(07): 102-108 .
    3. 姚南南,刘芳,高会群,张学龙,杜斌,张郢,杨梅,蒲小容. 基于荧光微球的多菌灵残留快速检测试纸条的研制. 食品科技. 2024(01): 344-350 .
    4. 陈喆,高文分,刘屹. 快速显色法筛查祛斑美白类化妆品中糖皮质激素. 化学分析计量. 2024(07): 7-11+22 .
    5. 薛芳,张照红,殷慧龄. 胶体金免疫层析法在农残快速检测中的研究与探讨. 新疆农业科技. 2024(06): 39-41 .
    6. 骆丽清,伍浚铧,胡茗淇,黎喜萍. 氟虫腈和水胺硫磷胶体金试剂盒性能考察与分析. 食品安全导刊. 2024(35): 72-75 .
    7. 杨睿,蔡琳,卢灿鑫,李乐诗,张洁吟,刘晓晗,王韦达. 致病菌测试片质量评价方法研究. 食品安全质量检测学报. 2024(23): 41-51 .
    8. 陈振东. 食品安全快速检测技术在食品安全监督中的运用浅析. 食品安全导刊. 2023(03): 121-123 .
    9. 王元清,周巧,李莎,韩静,王惠,李建龙,何利,陈姝娟,刘爱平,李琴,胡凯弟,刘书亮. 市售原粮农药残留快速检测产品的质量评价与分析. 中国粮油学报. 2023(04): 122-128 .
    10. 刘海虹,刘耀慧,雷毅. 基于真实食品的兽药残留快检结果准确性验证及应用探索. 食品安全导刊. 2023(33): 63-67 .
    11. 罗俊霞,张刚,申战宾,杨华,叶茂,段鹿梅,李艳珍,赵建波,桑丽雅,马蕾,张威. 胶体金免疫层析技术应用于农药残留检测的研究进展. 农产品质量与安全. 2022(01): 41-49 .
    12. 倪诗瑶,刘欠欠. 草莓农药残留快速检测方法对比分析. 上海农业科技. 2022(01): 30-32 .
    13. 顾晔,张爽,王成军,李悦,杨雨柔. 基于免疫原理的7种磺胺类兽药残留快速检测试剂结果准确性评估. 食品安全质量检测学报. 2022(03): 992-1000 .
    14. 陈振东. 食品安全检测技术在保障食品质量安全中的作用. 食品安全导刊. 2022(35): 166-168 .
    15. 叶秋雄,毛新武,梁俊发,张彬彬,林嘉健,彭程,易云婷. 农贸市场食用农产品快速检测工作监督评价与效果分析. 食品安全质量检测学报. 2021(19): 7826-7830 .
    16. 泮秋立,胡明燕,沈祥震,孙嵛林,李峥,王骏. 食用农产品批发市场自建快检室运行中存在的问题及建议. 食品安全导刊. 2021(29): 7-10 .
    17. 占绣萍,刘彬,黄兰淇,陈秀,马琳,陈建波,赵莉. 应用胶体金法检测叶类蔬菜中吡虫啉、多菌灵、啶虫脒、噻虫嗪的残留量分析. 农药科学与管理. 2021(10): 24-31 .
    18. 岳绪辉,杜斌,林栋,令狐克勇,杨梅,付秋平,李丙凤,杨曦. 草甘膦胶体金免疫层析试纸条的研制. 食品科技. 2021(12): 301-307 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (258) PDF downloads (36) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return