CHEN Zhen, LU Mintao, XU Fangyan, et al. Effect of Rosa roxburghii Wine on Lipid Metabolism Disorders in High Fat-induced Obese Mice[J]. Science and Technology of Food Industry, 2022, 43(3): 358−366. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050264.
Citation: CHEN Zhen, LU Mintao, XU Fangyan, et al. Effect of Rosa roxburghii Wine on Lipid Metabolism Disorders in High Fat-induced Obese Mice[J]. Science and Technology of Food Industry, 2022, 43(3): 358−366. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050264.

Effect of Rosa roxburghii Wine on Lipid Metabolism Disorders in High Fat-induced Obese Mice

More Information
  • Received Date: May 30, 2021
  • Available Online: December 08, 2021
  • Objective: To study the preventive effect and its mechanism of Rosa roxburghii wine on obesity process in high fat-induced mice. Method: 50 mice were randomly divided into a blank group, a model group, a low-dose (0.25 mL/80 g), a medium-dose (0.5 mL/80 g) and a high-dose Rosa roxburghii wine group (1 mL/80 g), each group of 10 mice, the experiment was carried out for 8 weeks. After the experiment, the viscera coefficient, serum and liver lipid metabolism-related physiological and biochemical indicators were measured. The mRNA relative expression of PPARα (Peroxisome proliferators-activated receptor-α), SREBP1 (Sterol-regulatory element binding proteins), SCD1 (Stearyl-coenzyme A dehydrogenase-1), ACACA (Acetyl-CoA carboxylases alpha), FASN (Fatty acid synthase), LXR (Liver X receptor) and AMPK (AMP-activated protein kinase) were measured by qRT-PCR. Results: Compared with model group, Rosa roxburghii wine could significantly (P<0.05) slow down the weight gain of mice, reduce fat index and total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) content in serum and liver, and increase the content of high density lipoprotein cholesterol (HDL-C). In addition, the high-dose group significantly down-regulated the mRNA relative expressions of PPARα, AMPK, LXR, ACACA, SCD1 and FASN. The HE staining results showed that Rosa roxburghii wine could relieve hepatocellular enlargement and reduce hepatic steatosis. Conclusion: Rosa roxburghii wine has a preventive effect on high-fat-induced obesity in mice, which may be attributed to its ability to reduce fat accumulation and improve lipid metabolism disorders.
  • [1]
    PSA B, XSA B. Proteomic analysis of liver in diet-induced hyperlipidemic mice under Fructus Rosa roxburghii action-Science Direct[J]. Journal of Proteomics,2020:230.
    [2]
    刘月姣. 《中国居民营养与慢性病状况报告(2020年)》发布[J]. 中国食物与营养, 2020, 26(12): 2.

    LIU Y J. The Report on the Nutritional and Chronic Diseases of Chinese Residents (2020) was published[J]. Chinese Food and Nutrition. 2020, 26(12): 2.
    [3]
    雁鸣. 肥胖可诱发多种疾病[N]. 中国消费者报, 2019(007).

    YAN M. Obesity can induce a variety of diseases[N]. China Consumer Daily, 2019(007).
    [4]
    QU L, LIU Q, ZHANG Q, et al. Kiwifruit seed oil ameliorates inflammation and hepatic fat metabolism in high-fat diet-induced obese mice[J]. Journal of Functional Foods,2019,52:715−723. doi: 10.1016/j.jff.2018.12.003
    [5]
    赵鹏葳, 简敬一, 任孟月. 药食同源中药治疗肥胖症的有效成分和机制研究进展[J]. 广东药科大学学报,2021,37(3):141−149. [ZHAO P W, JIAN J Y, REN M Y. Advances in the study of the active ingredients and mechanisms of the treatment of obesity by medicinal homologous Chinese medicine[J]. Guangdong Pharmaceutical University,2021,37(3):141−149.
    [6]
    CHEN G L, LI H J, ZHAO Y, et al. Saponinsfeom stems and leaves of Panax ginseng prevent obesity via regulating thermoogenesis, lipogenesis and lipolysis in high-fat diet-induced obese C57BL/6 mice[J]. Food Chem Tocicol,2017,106:393−403. doi: 10.1016/j.fct.2017.06.012
    [7]
    SHEN C Y, WAN L, WANG T X, et al. Citrus aurantium L. var. amara Engl. inhibited lipid accumulation in 3T3-L1cells and Caenorhabditis elegans and prevented obesity in high fat diet-fed mice[J]. Phares,2019,147:104347.
    [8]
    KWON E Y, LLEE J, KIM Y J, et al. Seabuckthorn leaves extract and flavonoid glycosides extract from seabuckthorn leaves amelio rates adiposity, hepaticsteatosis, insulinresistance, and inflammation in diet-induced obrsity[J]. Nutrients,2017,9(6):569. doi: 10.3390/nu9060569
    [9]
    XU J, VIDYARTHI S K, BAI W, et al. Nutririonalconstituents, health benefits and processing of Rosa roxburghii: A review[J]. Journal of Functional Foods,2019,60:103456. doi: 10.1016/j.jff.2019.103456
    [10]
    王怡, 李贵荣, 朱毅. 刺梨食品研究进展[J]. 食品研究与开发,2019,40(18):213−218. [WANG Y, LI G R, ZHU Y. Progress in the research of pear foods[J]. Food Research and Development,2019,40(18):213−218.
    [11]
    LEE J C, KIM J D, HSIEH F H, et al. Production of black rice cake using ground black rice and medium-grain brown rice[J]. Int J Food Sci Tech,2008,43(6):1078−1082. doi: 10.1111/j.1365-2621.2007.01569.x
    [12]
    HAZELWOOD L A, DARAN J M, VAN MARIS A J A, et al. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism[J]. Appl environ microb,2008,74:2259−2266. doi: 10.1128/AEM.02625-07
    [13]
    JU Y, ZHUO J X, LIU B, et al. Eating from the wild: Diversity of wild edible plans used by Tibetans in Shangri-la region, Yunnan, China[J]. J Ethnobiol Ethnomed,2013,9(1):28. doi: 10.1186/1746-4269-9-28
    [14]
    CHEN P, TAN S M, CHEN X M, et al. Study on hypolipidemic activity of Rosa roxburghii Tratt, propolis and crataegus oral liquid[J]. Modern Food Science and Technology,2019,35(8):78−83,72.
    [15]
    CHEN X M, TAN S M, HUANG Y, et al. Hypoglycemic effect of Rosa roxburghii juice on type 1 diabetic mice[J]. Modern Food Science and Technology,2019,35(8):13−20.
    [16]
    YU L M, FANG N, YANG X S, et al. Effects of Rosa roxburghii extract on proliferation and differentiation in human hepatoma SMMC-7721 cells and CD34(+) haematopoietic cells[J]. Journal of Health Science,2007,53(1):10−15. doi: 10.1248/jhs.53.10
    [17]
    HUANG X L, YAN H Q, ZHAI L S, et al. Characterization of the Rosa roxburghii Tratt transcriptome and analysis of MYB genes[J]. PLOS ONE,2019,14(3):e0203014. doi: 10.1371/journal.pone.0203014
    [18]
    隋怡, 杨平, 夏仁侠. 基于黔产刺梨“消食”作用的减肥活性及其机制研究[J]. 亚太传统医药,2020,16(9):25−28. [SUI Y, YANG P, XIA R X. Based on the weight loss activity and its mechanism of "eating"pears[J]. Asia Pacific Traditional Medicine,2020,16(9):25−28.
    [19]
    孙兆峰, 张霞, 夏作理. 刺梨叶对2型糖尿病大鼠脂代谢的影响[J]. 社区医学杂志,2015,13(10):53−55. [SUN Z F, ZHANG X, XIA Z L. Effect of prickly pear leaves on the metabolism of rat fat in type 2 diabetes[J]. Journal of Community Medicine,2015,13(10):53−55.
    [20]
    夏星, 钟振国, 廖林枝, 等. 刺梨提取物影响小鼠抗疲劳及耐缺氧能力的研究[J]. 时珍国医国药,2012,23(7):1664−1666. [XIA X, ZHONG Z G, LIAO L Z, et al. The study of pear extract affecting the anti-fatigue and hypoxia resistance of mice[J]. Time Jane's National Medicine,2012,23(7):1664−1666. doi: 10.3969/j.issn.1008-0805.2012.07.030
    [21]
    林武, 吴丽萍. 高脂饲料致高脂血症大鼠模型的研究[J]. 现代实用医学,2013,25(2):171−172, 185. [LIN W, WU L P. Study on the model of hyperlipidemia rats in high-fat feed[J]. Modern Practical Medicine,2013,25(2):171−172, 185. doi: 10.3969/j.issn.1671-0800.2013.02.030
    [22]
    李劲松. 刺梨果酒的酿造方法: CN105331481B[P]. 2018.

    LI J S. How to make pear fruit wine. CN105331481B[P]. 2018.
    [23]
    HE W S, WANG M G , PAN X X , et al. Role of plant stanol derivatives in the modulation of cholesterol metabolism and liver gene expression in mice[J]. Food Chemistry, 2013, 140(1-2): 9-16.
    [24]
    金玲凤, 刘小伟, 卢放根, 等. 大鼠非酒精性脂肪形成过程中肝脏蛋白质组动态变化的研究[J]. 中国现代医学杂志,2014,24(21):26−32. [JIN L F, LIU X W, LU F G, et al. Study on the dynamic changes of liver proteomics during non-alcoholic fat formation in rats[J]. Chinese Journal of Modern Medicine,2014,24(21):26−32. doi: 10.3969/j.issn.1005-8982.2014.21.006
    [25]
    WANG S N, YU H S, GU C M, et al. Preventive effect of soybean insoluble dietary fiber on high fat diet induced obesity in mice[J]. Science and Technology of Food Industry,2020,41(23):295−301, 314.
    [26]
    REN T Y, ZHU Y P, XIA X J, et al. Zanthoxylum alkyamides ameliorate protein metabolism disorder in STZ-induced diabetic rats[J]. Jurnal of Molecular Endocrinology,2017,58(3):113−125. doi: 10.1530/JME-16-0218
    [27]
    YOU Y M, REN T, ZHANG S Q, et al. Hypoglycemic effects of Zanthoxylum alkylamides by enhancing glucose metabolism and ameliorating pancreatic dysfunction in streptozotocin-induced diabetic rats[J]. Food & Function, 2015, 6(9): 3144-3154.
    [28]
    ZHANG Y H, WANG X, WANG W L, et al. Effects of grape seed proanthocyanins on high-fat and high-sugar diet-induced metabolic syndrome in rats[J]. Food Science,2020,41(1):112−120.
    [29]
    LAFONTAN M, GIRARD J. Impact of visceral adipose tissue on liver metabolism; Part I: Heterogeneity of adipose tissue and functional properties of visceral adipose tissue[J]. Diabetes & Metabolism,2008,34(4):317−327.
    [30]
    LIU S, FU MEI R, HU SOPHIA H, et al. Accuracy of body weight perception and obesity among Chinese Americans[J]. Obesity Research & Clinical Practice, 2015, 10: S48-S56.
    [31]
    MARCHESINI G, MOSCATIELLO S, DIDOMIZIO S, et al. Obesity associated liver disease[J]. J Clin Endocrinol Metab,2008,93(11S):S74−S80.
    [32]
    FABBRINI E, SULLIVAN S, KLEIN S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications[J]. Hepatology(Baltimore, Md.), 2010, 51(2): 679-689.
    [33]
    RUHL C E, EVERHART J E. Determinants of the association of overweight with elevated serum alanine aminotransferase activity in the United States[J]. Gastroenterology,2003,124(1):71−79. doi: 10.1053/gast.2003.50004
    [34]
    QU L L, YU B, LI Z, et al. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway[J]. Phytotherapy Research, 2016, 30(3): 402-411.
    [35]
    SCHETZ M, DE JONG A, DEANE A M, et al. Obesity in the critically ill: A narrative review[J]. Intensive Care Medicine,2019:1−13.
    [36]
    OH S Y, PARK S K, KIM J W, et al. Acetyl-CoA carboxylase β gene is regulated by sterol regulatory element-binding protein-1 in liver[J]. Journal of Biological Chemistry,2003,278(31):28410−28417. doi: 10.1074/jbc.M300553200
    [37]
    YOSHIKAWA T, SHIMANO H, AMEMIYA K, et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol l regulatory element-binding protein-1 gene promoter[J]. Mol cell Biol 2001, 21(9): 2991-3000.
    [38]
    LIM S. A new international journal targeting the pathophysiology and treatment of obesity and metabolic syndrome[J]. J Obes Meta Syndr,2017,26(2):81−83.
    [39]
    傅宝玉. 肝脏与脂肪代谢障碍—肝脏在机体脂类代谢中的作用[J]. 辽宁医学杂志,2004,18(2):57−58. [FU B Y. Liver and fat metabolism disorders—the role of the liver in body lipid metabolism[J]. Liaoning Medical Journal,2004,18(2):57−58. doi: 10.3969/j.issn.1001-1722.2004.02.001
    [40]
    RECCIA I, KUMAR J, AKLADIOS C, et al. Non-alcoholic fatty liver disease: A sign of systemic disease[J]. Metabolism-clinical & Experimental,2017:94−108.
    [41]
    P ANGULO. Obesity and nonalcoholic fatty liver disease[J]. Nutr Rev, 2007, 65(suppl 1): 57−63.
    [42]
    SIEKMANL. Reference methods for total cholesterol and total glycer[J]. European Journal of Clinical Chemistry & Clinical Biochemistry Journal of the Forum of European Clinical Chemistry Societies,2009,29:277−279.
    [43]
    PATHTHINIGE C S, SIRISENA N D, DISSANAYAKE V. Genetic determinants of inherited susceptibility to hypercholesterolemia a comprehensive literature review[J]. Lipids Health Dis,2017,16(1):103. doi: 10.1186/s12944-017-0488-4
    [44]
    周慧娟. 高脂膳食对肝脏脂代谢的影响及其机理研究[D]. 长沙: 湖南农业大学, 2018.

    ZHOU H J. Effect of high-fat diet on liver lipid metabolism and its mechanism[D]. Changsha: Hunan Agricultural University, 2018.
    [45]
    LUSCHER T F, LANDMESSER U, VON ECKARDSTEIN A, et al, Hight-desitylipoprotein: Vascular protective effects, dysfunction, and potential as therapeutic target[J]. Circ Res, 2014, 114(1): 171-182.
    [46]
    于平, 汪晓辉. 植物乳杆菌对大鼠体内血清胆固醇含量的影响[J]. 中国食品学报,2016,16(8):45−52. [YU P, WANG X H. Effect of plant Lactobacillus on serum cholesterol levels in rats[J]. Chinese Journal of Food Science,2016,16(8):45−52.
    [47]
    王康乐, 陆震鸣, 陈露, 等. 云芝多糖组分对酒精性肝损伤小鼠的保肝活性测试[J]. 食药用菌,2018,26(4):235−239. [WANG K L, LU Z M, CHEN L, et al. The polysaccharide components of Yunzhi were tested for liver preservation activity in alcoholic liver damage mice[J]. Medicinal Bacteria,2018,26(4):235−239.
    [48]
    符佳, 李维, 周佳仪, 等. 虎杖醇提物对高脂诱导肥胖大鼠肠道菌群的调节作用[J]. 成都大学学报(自然科学版),2020,39(3):264−271. [FU J, LI W, ZHOU J Y, et al. The regulation of high-fat induced intestinal flora in obese rats[J]. Journal of Chengdu University (Natural Science Edition),2020,39(3):264−271.
    [49]
    何冬萍, 朱晓萍, 陈丽玲, 等. 葛根红曲提取物对高脂饲料诱导肥胖小鼠的抗肥胖功效[J]. 中国食品学报,2019,19(11):25−30. [HE D P, ZHU X P, CHEN L L, et al. Gergen red curvature extract on high-fat feed induced obesity in obese mice anti-obesity effect[J]. Chinese Journal of Food Science,2019,19(11):25−30.
    [50]
    何帅, 王明友, 赵季军, 等. 表没食子儿茶素没食子酸酯预防高脂饮食诱导的大鼠肥胖[J]. 西部医学,2020,32(4):496−499, 504. [HE S, WANG P Y, ZHAO J J, et al. Tableless children who did not eat catetonin did not eat ester to prevent obesity in rats induced by a high-fat diet[J]. Western Medicine,2020,32(4):496−499, 504. doi: 10.3969/j.issn.1672-3511.2020.04.008
    [51]
    XUEQUANH, RUILI Z, YINGYING X, et al. The protective effects of polysaccharides from Agaricusblazei Murill against cadmium-induced oxidant stress and inflammatory damage in chicken livers[J]. Biological Trace Element Research,2016,178(1):1−10.
    [52]
    SHIH C C, LIN C H, WU J B. Eriobotrya japonica improves hyperlipidemia and reverses insulin resistance in high-fat-fed mice[J]. Phytotherapy Research Ptr,2010,24(12):1769−1780. doi: 10.1002/ptr.3143
    [53]
    PAWLAK M, LEFEBVRE P, STAELS B. Molecular mechanism of PPAR alpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease[J]. Journal of Hepatology,2015,62(3):720−733. doi: 10.1016/j.jhep.2014.10.039
    [54]
    DING C , LIANG Y , TIAN M , et al. Inhibitory effects of pepper extract on high-fat diet-induced obesity and gene expression in mice[J]. Modern Food Science & Technology,2017,33(5):1−6, 13.
    [55]
    OUCHFOUN M, EID H M, MUSALLAM L, et al. Labrador tea (Rhododendron groenlandicum) attenuates insulin resistance in a diet-induced obesity mouse model[J]. Eur J Nutr,2016,55(3):941. doi: 10.1007/s00394-015-0908-z
    [56]
    HAN X, CUI Z Y, SONG J, et al. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs -dependent manner[J]. Chem Biol Interact,2019,311:108794. doi: 10.1016/j.cbi.2019.108794
    [57]
    WANG G, HUANG W, XIA Y, et al. Cholesterol-lowering potentials of Lactobacillus strains overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice[J]. Food & Function, 2019.
    [58]
    HARADA N, ODA Z, HARA Y, et al. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice[J]. Molecular & Cellular Biology,2007,27(5):1881.
    [59]
    JR H H, PETRAS S F, SHELLY L D, et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals.[J]. Journal of Biological Chemistry,2003,278(39):37099−37111. doi: 10.1074/jbc.M304481200
    [60]
    HERZIG S, SHAW R J. AMPK: Guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol,2018,19(2):121−35. doi: 10.1038/nrm.2017.95
    [61]
    王紫涵, 罗金定, 吕慧婕, 等. 二氢杨梅素经激活SIRT1-AMPK通路抑制高脂饮食诱导的肥胖小鼠肝脏脂质沉积[J]. 中国药理学通报,2021,37(1):107−113. [WANG Z H, LOU J D, LV H J, et al. Dihydrophydrometin inhibited liver lipid deposition in obese mice induced by a high-fat diet by activating the SIRT1-AMPK pathway[J]. Chinese Pharmacology Bulletin,2021,37(1):107−113. doi: 10.3969/j.issn.1001-1978.2021.01.017
    [62]
    靳雅倩, 马朋, 王同壮, 等. 6-姜烯酚通过抑制SCD1表达改善db/db小鼠肝脏脂肪变性的研究[J]. 中药新药与临床药理,2021,32(1):50−56. [JIN Y Q, MA P, WANG T Z, et al. 6-Turpene phenol improved liver fat degeneration in db/db mice by inhibiting SCD1 expression[J]. New Chinese Medicine and Clinical Pharmacology,2021,32(1):50−56.
    [63]
    黄莉莉, 黄小强, 张小琴, 等. 岩藻黄质对高脂饮食诱导的肥胖小鼠胰岛素抵抗的影响[J]. 中国中药杂志,2021,46(1):171−176. [HUANG L L, HUANG X Q, ZHANG X Q, et al. Effects of rock algae yellow matter on insulin resistance in obese mice induced by a high-fat diet[J]. Chinese Medicine Journal,2021,46(1):171−176.
    [64]
    梁曦, 张喆, 吕优优, 等. 益生菌通过下调FXR缓解高胆固醇诱导的高脂血症[A]. 中国食品科学技术学会. 中国食品科学技术学会第十七届年会摘要集[C]. 中国食品科学技术学会: 中国食品科学技术学会, 2020: 2.

    LIANG X, ZHANG J, LV Y Y, et al. Probiotics relieve high cholesterol-induced hyperlipidemia by lowering FXR[A]. Chinese Society of Food Science and Technology. Summary of the 17th Annual Meeting of the Chinese Academy of Food Science and Technology[C]. Chinese Society of Food Science and Technology: Chinese Society of Food Science and Technology, 2020: 2.
  • Cited by

    Periodical cited type(9)

    1. 孙喜,王召路,贾谨睿,王梦洋,孙润卓,王鹏,史新娥. 虫草素及其在生猪养殖中的应用. 畜牧兽医杂志. 2024(04): 1-7 .
    2. 池杰明. 虫草素抗肿瘤新型给药系统研究进展. 中外医疗. 2024(35): 195-198 .
    3. 卢茂芳,李薇,李小兰,唐湘黔,李柯. RP-HPLC双波长法同时测定参橘草营养强化饮液中5种成分的含量. 湖南中医杂志. 2023(03): 182-186 .
    4. 冯辽辽,马一翔,刘广平,黄琰莹,刘萱,贺晓龙. 北虫草菌糠中多糖的提取及成分测定. 延安大学学报(自然科学版). 2023(03): 29-34 .
    5. 宋羚,田迪,黄蓉,刘新会,罗家兴,马啸. 虫草素对肺癌细胞生长及迁移的影响. 菌物学报. 2022(07): 1088-1098 .
    6. 张鑫,周雪冰,高铭,吕游,王莹,杨春宇,朴英实,任香善. 虫草素通过激活AMPK和MAPK信号通路抑制脂代谢抑制人胃癌细胞的增殖和迁移. 细胞与分子免疫学杂志. 2022(06): 513-521 .
    7. 盛瑜,谭超杰,白丽丹,孙晶波,安丽萍,郭笑. 北虫草化学成分及药理作用研究进展. 中国食用菌. 2021(02): 1-5+22 .
    8. 徐悉哲,王言之,李世芬,胡奇,王玉邦. 蛹虫草对小鼠免疫功能的调节作用. 江苏医药. 2021(07): 661-663 .
    9. 蔡曦,尚超,孟丽荣. 虫草素抗肿瘤药理作用及其机制的研究进展. 药物评价研究. 2021(07): 1548-1554 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (204) PDF downloads (23) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return