Citation: | CHEN Zhen, LU Mintao, XU Fangyan, et al. Effect of Rosa roxburghii Wine on Lipid Metabolism Disorders in High Fat-induced Obese Mice[J]. Science and Technology of Food Industry, 2022, 43(3): 358−366. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050264. |
[1] |
PSA B, XSA B. Proteomic analysis of liver in diet-induced hyperlipidemic mice under Fructus Rosa roxburghii action-Science Direct[J]. Journal of Proteomics,2020:230.
|
[2] |
刘月姣. 《中国居民营养与慢性病状况报告(2020年)》发布[J]. 中国食物与营养, 2020, 26(12): 2.
LIU Y J. The Report on the Nutritional and Chronic Diseases of Chinese Residents (2020) was published[J]. Chinese Food and Nutrition. 2020, 26(12): 2.
|
[3] |
雁鸣. 肥胖可诱发多种疾病[N]. 中国消费者报, 2019(007).
YAN M. Obesity can induce a variety of diseases[N]. China Consumer Daily, 2019(007).
|
[4] |
QU L, LIU Q, ZHANG Q, et al. Kiwifruit seed oil ameliorates inflammation and hepatic fat metabolism in high-fat diet-induced obese mice[J]. Journal of Functional Foods,2019,52:715−723. doi: 10.1016/j.jff.2018.12.003
|
[5] |
赵鹏葳, 简敬一, 任孟月. 药食同源中药治疗肥胖症的有效成分和机制研究进展[J]. 广东药科大学学报,2021,37(3):141−149. [ZHAO P W, JIAN J Y, REN M Y. Advances in the study of the active ingredients and mechanisms of the treatment of obesity by medicinal homologous Chinese medicine[J]. Guangdong Pharmaceutical University,2021,37(3):141−149.
|
[6] |
CHEN G L, LI H J, ZHAO Y, et al. Saponinsfeom stems and leaves of Panax ginseng prevent obesity via regulating thermoogenesis, lipogenesis and lipolysis in high-fat diet-induced obese C57BL/6 mice[J]. Food Chem Tocicol,2017,106:393−403. doi: 10.1016/j.fct.2017.06.012
|
[7] |
SHEN C Y, WAN L, WANG T X, et al. Citrus aurantium L. var. amara Engl. inhibited lipid accumulation in 3T3-L1cells and Caenorhabditis elegans and prevented obesity in high fat diet-fed mice[J]. Phares,2019,147:104347.
|
[8] |
KWON E Y, LLEE J, KIM Y J, et al. Seabuckthorn leaves extract and flavonoid glycosides extract from seabuckthorn leaves amelio rates adiposity, hepaticsteatosis, insulinresistance, and inflammation in diet-induced obrsity[J]. Nutrients,2017,9(6):569. doi: 10.3390/nu9060569
|
[9] |
XU J, VIDYARTHI S K, BAI W, et al. Nutririonalconstituents, health benefits and processing of Rosa roxburghii: A review[J]. Journal of Functional Foods,2019,60:103456. doi: 10.1016/j.jff.2019.103456
|
[10] |
王怡, 李贵荣, 朱毅. 刺梨食品研究进展[J]. 食品研究与开发,2019,40(18):213−218. [WANG Y, LI G R, ZHU Y. Progress in the research of pear foods[J]. Food Research and Development,2019,40(18):213−218.
|
[11] |
LEE J C, KIM J D, HSIEH F H, et al. Production of black rice cake using ground black rice and medium-grain brown rice[J]. Int J Food Sci Tech,2008,43(6):1078−1082. doi: 10.1111/j.1365-2621.2007.01569.x
|
[12] |
HAZELWOOD L A, DARAN J M, VAN MARIS A J A, et al. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism[J]. Appl environ microb,2008,74:2259−2266. doi: 10.1128/AEM.02625-07
|
[13] |
JU Y, ZHUO J X, LIU B, et al. Eating from the wild: Diversity of wild edible plans used by Tibetans in Shangri-la region, Yunnan, China[J]. J Ethnobiol Ethnomed,2013,9(1):28. doi: 10.1186/1746-4269-9-28
|
[14] |
CHEN P, TAN S M, CHEN X M, et al. Study on hypolipidemic activity of Rosa roxburghii Tratt
|
[15] |
CHEN X M, TAN S M, HUANG Y, et al. Hypoglycemic effect of Rosa roxburghii juice on type 1 diabetic mice[J]. Modern Food Science and Technology,2019,35(8):13−20.
|
[16] |
YU L M, FANG N, YANG X S, et al. Effects of Rosa roxburghii extract on proliferation and differentiation in human hepatoma SMMC-7721 cells and CD34(+) haematopoietic cells[J]. Journal of Health Science,2007,53(1):10−15. doi: 10.1248/jhs.53.10
|
[17] |
HUANG X L, YAN H Q, ZHAI L S, et al. Characterization of the Rosa roxburghii Tratt transcriptome and analysis of MYB genes[J]. PLOS ONE,2019,14(3):e0203014. doi: 10.1371/journal.pone.0203014
|
[18] |
隋怡, 杨平, 夏仁侠. 基于黔产刺梨“消食”作用的减肥活性及其机制研究[J]. 亚太传统医药,2020,16(9):25−28. [SUI Y, YANG P, XIA R X. Based on the weight loss activity and its mechanism of "eating"pears[J]. Asia Pacific Traditional Medicine,2020,16(9):25−28.
|
[19] |
孙兆峰, 张霞, 夏作理. 刺梨叶对2型糖尿病大鼠脂代谢的影响[J]. 社区医学杂志,2015,13(10):53−55. [SUN Z F, ZHANG X, XIA Z L. Effect of prickly pear leaves on the metabolism of rat fat in type 2 diabetes[J]. Journal of Community Medicine,2015,13(10):53−55.
|
[20] |
夏星, 钟振国, 廖林枝, 等. 刺梨提取物影响小鼠抗疲劳及耐缺氧能力的研究[J]. 时珍国医国药,2012,23(7):1664−1666. [XIA X, ZHONG Z G, LIAO L Z, et al. The study of pear extract affecting the anti-fatigue and hypoxia resistance of mice[J]. Time Jane's National Medicine,2012,23(7):1664−1666. doi: 10.3969/j.issn.1008-0805.2012.07.030
|
[21] |
林武, 吴丽萍. 高脂饲料致高脂血症大鼠模型的研究[J]. 现代实用医学,2013,25(2):171−172, 185. [LIN W, WU L P. Study on the model of hyperlipidemia rats in high-fat feed[J]. Modern Practical Medicine,2013,25(2):171−172, 185. doi: 10.3969/j.issn.1671-0800.2013.02.030
|
[22] |
李劲松. 刺梨果酒的酿造方法: CN105331481B[P]. 2018.
LI J S. How to make pear fruit wine. CN105331481B[P]. 2018.
|
[23] |
HE W S, WANG M G , PAN X X , et al. Role of plant stanol derivatives in the modulation of cholesterol metabolism and liver gene expression in mice[J]. Food Chemistry, 2013, 140(1-2): 9-16.
|
[24] |
金玲凤, 刘小伟, 卢放根, 等. 大鼠非酒精性脂肪形成过程中肝脏蛋白质组动态变化的研究[J]. 中国现代医学杂志,2014,24(21):26−32. [JIN L F, LIU X W, LU F G, et al. Study on the dynamic changes of liver proteomics during non-alcoholic fat formation in rats[J]. Chinese Journal of Modern Medicine,2014,24(21):26−32. doi: 10.3969/j.issn.1005-8982.2014.21.006
|
[25] |
WANG S N, YU H S, GU C M, et al. Preventive effect of soybean insoluble dietary fiber on high fat diet induced obesity in mice[J]. Science and Technology of Food Industry,2020,41(23):295−301, 314.
|
[26] |
REN T Y, ZHU Y P, XIA X J, et al. Zanthoxylum alkyamides ameliorate protein metabolism disorder in STZ-induced diabetic rats[J]. Jurnal of Molecular Endocrinology,2017,58(3):113−125. doi: 10.1530/JME-16-0218
|
[27] |
YOU Y M, REN T, ZHANG S Q, et al. Hypoglycemic effects of Zanthoxylum alkylamides by enhancing glucose metabolism and ameliorating pancreatic dysfunction in streptozotocin-induced diabetic rats[J]. Food & Function, 2015, 6(9): 3144-3154.
|
[28] |
ZHANG Y H, WANG X, WANG W L, et al. Effects of grape seed proanthocyanins on high-fat and high-sugar diet-induced metabolic syndrome in rats[J]. Food Science,2020,41(1):112−120.
|
[29] |
LAFONTAN M, GIRARD J. Impact of visceral adipose tissue on liver metabolism; Part I: Heterogeneity of adipose tissue and functional properties of visceral adipose tissue[J]. Diabetes & Metabolism,2008,34(4):317−327.
|
[30] |
LIU S, FU MEI R, HU SOPHIA H, et al. Accuracy of body weight perception and obesity among Chinese Americans[J]. Obesity Research & Clinical Practice, 2015, 10: S48-S56.
|
[31] |
MARCHESINI G, MOSCATIELLO S, DIDOMIZIO S, et al. Obesity associated liver disease[J]. J Clin Endocrinol Metab,2008,93(11S):S74−S80.
|
[32] |
FABBRINI E, SULLIVAN S, KLEIN S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications[J]. Hepatology(Baltimore, Md.), 2010, 51(2): 679-689.
|
[33] |
RUHL C E, EVERHART J E. Determinants of the association of overweight with elevated serum alanine aminotransferase activity in the United States[J]. Gastroenterology,2003,124(1):71−79. doi: 10.1053/gast.2003.50004
|
[34] |
QU L L, YU B, LI Z, et al. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway[J]. Phytotherapy Research, 2016, 30(3): 402-411.
|
[35] |
SCHETZ M, DE JONG A, DEANE A M, et al. Obesity in the critically ill: A narrative review[J]. Intensive Care Medicine,2019:1−13.
|
[36] |
OH S Y, PARK S K, KIM J W, et al. Acetyl-CoA carboxylase β gene is regulated by sterol regulatory element-binding protein-1 in liver[J]. Journal of Biological Chemistry,2003,278(31):28410−28417. doi: 10.1074/jbc.M300553200
|
[37] |
YOSHIKAWA T, SHIMANO H, AMEMIYA K, et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol l regulatory element-binding protein-1 gene promoter[J]. Mol cell Biol 2001, 21(9): 2991-3000.
|
[38] |
LIM S. A new international journal targeting the pathophysiology and treatment of obesity and metabolic syndrome[J]. J Obes Meta Syndr,2017,26(2):81−83.
|
[39] |
傅宝玉. 肝脏与脂肪代谢障碍—肝脏在机体脂类代谢中的作用[J]. 辽宁医学杂志,2004,18(2):57−58. [FU B Y. Liver and fat metabolism disorders—the role of the liver in body lipid metabolism[J]. Liaoning Medical Journal,2004,18(2):57−58. doi: 10.3969/j.issn.1001-1722.2004.02.001
|
[40] |
RECCIA I, KUMAR J, AKLADIOS C, et al. Non-alcoholic fatty liver disease: A sign of systemic disease[J]. Metabolism-clinical & Experimental,2017:94−108.
|
[41] |
P ANGULO. Obesity and nonalcoholic fatty liver disease[J]. Nutr Rev, 2007, 65(suppl 1): 57−63.
|
[42] |
SIEKMANL. Reference methods for total cholesterol and total glycer[J]. European Journal of Clinical Chemistry & Clinical Biochemistry Journal of the Forum of European Clinical Chemistry Societies,2009,29:277−279.
|
[43] |
PATHTHINIGE C S, SIRISENA N D, DISSANAYAKE V. Genetic determinants of inherited susceptibility to hypercholesterolemia a comprehensive literature review[J]. Lipids Health Dis,2017,16(1):103. doi: 10.1186/s12944-017-0488-4
|
[44] |
周慧娟. 高脂膳食对肝脏脂代谢的影响及其机理研究[D]. 长沙: 湖南农业大学, 2018.
ZHOU H J. Effect of high-fat diet on liver lipid metabolism and its mechanism[D]. Changsha: Hunan Agricultural University, 2018.
|
[45] |
LUSCHER T F, LANDMESSER U, VON ECKARDSTEIN A, et al, Hight-desitylipoprotein: Vascular protective effects, dysfunction, and potential as therapeutic target[J]. Circ Res, 2014, 114(1): 171-182.
|
[46] |
于平, 汪晓辉. 植物乳杆菌对大鼠体内血清胆固醇含量的影响[J]. 中国食品学报,2016,16(8):45−52. [YU P, WANG X H. Effect of plant Lactobacillus on serum cholesterol levels in rats[J]. Chinese Journal of Food Science,2016,16(8):45−52.
|
[47] |
王康乐, 陆震鸣, 陈露, 等. 云芝多糖组分对酒精性肝损伤小鼠的保肝活性测试[J]. 食药用菌,2018,26(4):235−239. [WANG K L, LU Z M, CHEN L, et al. The polysaccharide components of Yunzhi were tested for liver preservation activity in alcoholic liver damage mice[J]. Medicinal Bacteria,2018,26(4):235−239.
|
[48] |
符佳, 李维, 周佳仪, 等. 虎杖醇提物对高脂诱导肥胖大鼠肠道菌群的调节作用[J]. 成都大学学报(自然科学版),2020,39(3):264−271. [FU J, LI W, ZHOU J Y, et al. The regulation of high-fat induced intestinal flora in obese rats[J]. Journal of Chengdu University (Natural Science Edition),2020,39(3):264−271.
|
[49] |
何冬萍, 朱晓萍, 陈丽玲, 等. 葛根红曲提取物对高脂饲料诱导肥胖小鼠的抗肥胖功效[J]. 中国食品学报,2019,19(11):25−30. [HE D P, ZHU X P, CHEN L L, et al. Gergen red curvature extract on high-fat feed induced obesity in obese mice anti-obesity effect[J]. Chinese Journal of Food Science,2019,19(11):25−30.
|
[50] |
何帅, 王明友, 赵季军, 等. 表没食子儿茶素没食子酸酯预防高脂饮食诱导的大鼠肥胖[J]. 西部医学,2020,32(4):496−499, 504. [HE S, WANG P Y, ZHAO J J, et al. Tableless children who did not eat catetonin did not eat ester to prevent obesity in rats induced by a high-fat diet[J]. Western Medicine,2020,32(4):496−499, 504. doi: 10.3969/j.issn.1672-3511.2020.04.008
|
[51] |
XUEQUANH, RUILI Z, YINGYING X, et al. The protective effects of polysaccharides from Agaricusblazei Murill against cadmium-induced oxidant stress and inflammatory damage in chicken livers[J]. Biological Trace Element Research,2016,178(1):1−10.
|
[52] |
SHIH C C, LIN C H, WU J B. Eriobotrya japonica improves hyperlipidemia and reverses insulin resistance in high-fat-fed mice[J]. Phytotherapy Research Ptr,2010,24(12):1769−1780. doi: 10.1002/ptr.3143
|
[53] |
PAWLAK M, LEFEBVRE P, STAELS B. Molecular mechanism of PPAR alpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease[J]. Journal of Hepatology,2015,62(3):720−733. doi: 10.1016/j.jhep.2014.10.039
|
[54] |
DING C , LIANG Y , TIAN M , et al. Inhibitory effects of pepper extract on high-fat diet-induced obesity and gene expression in mice[J]. Modern Food Science & Technology,2017,33(5):1−6, 13.
|
[55] |
OUCHFOUN M, EID H M, MUSALLAM L, et al. Labrador tea (Rhododendron groenlandicum) attenuates insulin resistance in a diet-induced obesity mouse model[J]. Eur J Nutr,2016,55(3):941. doi: 10.1007/s00394-015-0908-z
|
[56] |
HAN X, CUI Z Y, SONG J, et al. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs -dependent manner[J]. Chem Biol Interact,2019,311:108794. doi: 10.1016/j.cbi.2019.108794
|
[57] |
WANG G, HUANG W, XIA Y, et al. Cholesterol-lowering potentials of Lactobacillus strains overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice[J]. Food & Function, 2019.
|
[58] |
HARADA N, ODA Z, HARA Y, et al. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice[J]. Molecular & Cellular Biology,2007,27(5):1881.
|
[59] |
JR H H, PETRAS S F, SHELLY L D, et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals.[J]. Journal of Biological Chemistry,2003,278(39):37099−37111. doi: 10.1074/jbc.M304481200
|
[60] |
HERZIG S, SHAW R J. AMPK: Guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol,2018,19(2):121−35. doi: 10.1038/nrm.2017.95
|
[61] |
王紫涵, 罗金定, 吕慧婕, 等. 二氢杨梅素经激活SIRT1-AMPK通路抑制高脂饮食诱导的肥胖小鼠肝脏脂质沉积[J]. 中国药理学通报,2021,37(1):107−113. [WANG Z H, LOU J D, LV H J, et al. Dihydrophydrometin inhibited liver lipid deposition in obese mice induced by a high-fat diet by activating the SIRT1-AMPK pathway[J]. Chinese Pharmacology Bulletin,2021,37(1):107−113. doi: 10.3969/j.issn.1001-1978.2021.01.017
|
[62] |
靳雅倩, 马朋, 王同壮, 等. 6-姜烯酚通过抑制SCD1表达改善db/db小鼠肝脏脂肪变性的研究[J]. 中药新药与临床药理,2021,32(1):50−56. [JIN Y Q, MA P, WANG T Z, et al. 6-Turpene phenol improved liver fat degeneration in db/db mice by inhibiting SCD1 expression[J]. New Chinese Medicine and Clinical Pharmacology,2021,32(1):50−56.
|
[63] |
黄莉莉, 黄小强, 张小琴, 等. 岩藻黄质对高脂饮食诱导的肥胖小鼠胰岛素抵抗的影响[J]. 中国中药杂志,2021,46(1):171−176. [HUANG L L, HUANG X Q, ZHANG X Q, et al. Effects of rock algae yellow matter on insulin resistance in obese mice induced by a high-fat diet[J]. Chinese Medicine Journal,2021,46(1):171−176.
|
[64] |
梁曦, 张喆, 吕优优, 等. 益生菌通过下调FXR缓解高胆固醇诱导的高脂血症[A]. 中国食品科学技术学会. 中国食品科学技术学会第十七届年会摘要集[C]. 中国食品科学技术学会: 中国食品科学技术学会, 2020: 2.
LIANG X, ZHANG J, LV Y Y, et al. Probiotics relieve high cholesterol-induced hyperlipidemia by lowering FXR[A]. Chinese Society of Food Science and Technology. Summary of the 17th Annual Meeting of the Chinese Academy of Food Science and Technology[C]. Chinese Society of Food Science and Technology: Chinese Society of Food Science and Technology, 2020: 2.
|