Citation: | SHEN Yuting, LI Shaowen, MENG Xianrong. Cardinal Parameters Model in Food Microbiological Monitoring: A Review[J]. Science and Technology of Food Industry, 2022, 43(9): 477−484. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050213. |
[1] |
钟延旭, 赵鹏. 我国食源性疾病监测工作进展[J]. 应用预防医学,2019,25(1):80−83. [ZHONG Y X, ZHAO P. Progress of foodborne disease surveillance in China[J]. Applied Preventive Medicine,2019,25(1):80−83. doi: 10.3969/j.issn.1673-758X.2019.01.026
|
[2] |
ROBERTS T A, JARVIS B. Predictive modelling of food safety with particular reference to Clostridium botulinum in model cured meat systems[J]. Society for Applied Bacteriology Symposium,1983,11(11):85−95.
|
[3] |
POSSAS A, VALDRAMIDIS V, GARCÍA-GIMENO R M, et al. High hydrostatic pressure processing of sliced fermented sausages: A quantitative exposure assessment for Listeria monocytogenes[J]. Innovative Food Science and Emerging Technologies,2019,52:406−419. doi: 10.1016/j.ifset.2019.01.017
|
[4] |
GONZÁLEZ-TEJEDOR G A, MARTÍNEZ-HERNÁNDEZ G B, GARRE A, et al. Quality changes and shelf-life prediction of a fresh fruit and vegetable purple smoothie[J]. Food and Bioprocess Technology,2017,10(10):1892−1904. doi: 10.1007/s11947-017-1965-5
|
[5] |
WHITING R C, BUCHANAN R L. A classification of models for predictive microbiology[J]. Food Microbiology,1993,10(2):175−177. doi: 10.1006/fmic.1993.1017
|
[6] |
RATKOWSKY D A, OLLEY J, MCMEEKIN T A, et al. Relationship between temperature and growth rate of bacterial cultures[J]. Journal of Bacteriology,1982,149(1):1−5. doi: 10.1128/jb.149.1.1-5.1982
|
[7] |
叶可萍. 真空包装冷却猪肉中单增李斯特菌的生长预测模型研究[D]. 南京: 南京农业大学, 2013
YE Keping. Predictive modelling of Listeria monocytogenes growth on vacuum-packaged chilled pork[D]. Nanjing: Nanjing Agricultural University, 2013.
|
[8] |
ROSSO L, LOBRY J R, FLANDROIS J P. An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[J]. Journal of Theoretical Biology,1993,162(4):447−463. doi: 10.1006/jtbi.1993.1099
|
[9] |
ZURERA-COSANO G, GARCÍA-GIMENO R M, RODRÍGUEZ-PÉREZ R, et al. Performance of response surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions[J]. Food Control,2006,17(6):429−438. doi: 10.1016/j.foodcont.2005.02.003
|
[10] |
ARYANI D C, ZWIETERING M H, den BESTEN H M. The effect of different matrices on the growth kinetics and heat resistance of Listeria monocytogenes and Lactobacillus plantarum[J]. International Journal of Food Microbiology,2016,238:326−337. doi: 10.1016/j.ijfoodmicro.2016.09.012
|
[11] |
DIMAKOPOULOU-PAPAZOGLOU D, LIANOU A, KOUTSOUMANIS K P. Modelling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity[J]. Food Microbiology, 2016, 53(Pt B): 76-81.
|
[12] |
ANASTASIADI M, LAMBERT R J W. Modelling the effect of combined antimicrobials: A base model for multiple-hurdles[J]. International Journal of Food Microbiology,2017,252:10−17. doi: 10.1016/j.ijfoodmicro.2017.04.004
|
[13] |
ROSSO L, LOBRY J R, BAJARD S, et al. Convenient model to describe the combined effects of temperature and pH on microbial growth[J]. Applied and Environmental Microbiology,1995,61(2):610−616. doi: 10.1128/aem.61.2.610-616.1995
|
[14] |
ROSSO L, ROBINSON T P. A cardinal model to describe the effect of water activity on the growth of moulds[J]. International Journal of Food Microbiology,2001,63(3):265−273. doi: 10.1016/S0168-1605(00)00469-4
|
[15] |
ZWIETERING M H, WIJTZES T, DE WIT J C, et al. A decision support system for prediction of the microbial spoilage in foods[J]. Journal of Food Protection,1992,55(12):973−979. doi: 10.4315/0362-028X-55.12.973
|
[16] |
ROSSO L. Models using cardinal values: Predictive microbiology applied to chilled food preservation[C]. Proceeding of Conference No 1997/2 of Commission C2, European Commission, 1999, 18816: 48–55.
|
[17] |
NUNES S B, CADAVEZ V, TEIXEIRA J A, et al. Cardinal parameter meta-regression models describing Listeria monocytogenes growth in broth[J]. Food Research International,2020,136:109476. doi: 10.1016/j.foodres.2020.109476
|
[18] |
DEVLIEGHERE F, GEERAERD A H, VERSYCK K J, et al. Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: A predictive model[J]. Food Microbiology, 2001, 18(1): 53–66.
|
[19] |
BELBAHI A, LEGUERINEL I, MÉOT J M, et al. Modelling the effect of temperature, water activity and carbon dioxide on the growth of Aspergillus niger and Alternaria alternata isolated from fresh date fruit[J]. Journal of Applied Microbiology,2016,121(6):1685−1698. doi: 10.1111/jam.13296
|
[20] |
TAOUKIS P S, KOUTSOUMANIS K, NYCHAS G J. Use of time-temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions[J]. International Journal of Food Microbiology,1999,53(1):21−31. doi: 10.1016/S0168-1605(99)00142-7
|
[21] |
TARLAK F, OZDEMIR M, MELIKOGLU M. Mathematical modelling of temperature effect on growth kinetics of Pseudomonas spp. on sliced mushroom (Agaricus bisporus)[J]. International Journal of Food Microbiology,2018,266:274−281. doi: 10.1016/j.ijfoodmicro.2017.12.017
|
[22] |
SAUTOUR M, DANTIGNY P, DIVIES C, et al. A temperature-type model for describing the relationship between fungal growth and water activity[J]. International Journal of Food Microbiology,2001,67(1-2):63−69. doi: 10.1016/S0168-1605(01)00471-8
|
[23] |
DALGAARD P, MEJLHOLM O. Modeling growth of Listeria and lactic acid bacteria in food environments[J]. Methods in Molecular Biology,2019,1918:247−264.
|
[24] |
MARC Y L, HUCHET V, BOURGEOIS C M, et al. Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration[J]. International Journal of Food Microbiology,2002,73(2-3):219−237. doi: 10.1016/S0168-1605(01)00640-7
|
[25] |
GIMÉNEZ B, DALGAARD P. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon[J]. Journal of Appllied Microbiology,2004,96(1):96−109. doi: 10.1046/j.1365-2672.2003.02137.x
|
[26] |
MEJLHOLM O, DALGAARD P. Modeling and predicting the growth boundary of Listeria monocytogenes in lightly preserved seafood[J]. Journal of Food Protection,2007,70(1):70−84. doi: 10.4315/0362-028X-70.1.70
|
[27] |
MEJLHOLM O, DALGAARD P. Modeling and predicting the growth of lactic acid bacteria in lightly preserved seafood and their inhibiting effect on Listeria monocytogenes[J]. Journal of Food Protection,2007,70(11):2485−2497. doi: 10.4315/0362-028X-70.11.2485
|
[28] |
MEJLHOLM O, DALGAARD P. Development and validation of an extensive growth and growth boundary model for Listeria monocytogenes in lightly preserved and ready-to-eat shrimp[J]. Journal of Food Protection,2009,72(10):2132−2143. doi: 10.4315/0362-028X-72.10.2132
|
[29] |
MEJLHOLM O, DALGAARD P. Development and validation of an extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. in seafood and meat products[J]. International Journal of Food Microbiology,2013,167(2):244−260. doi: 10.1016/j.ijfoodmicro.2013.09.013
|
[30] |
MARTINEZ-RIOS V, JØRGENSEN MØ, KOUKOU I, et al. Growth and growth boundary model with terms for melting salts to predict growth responses of Listeria monocytogenes in spreadable processed cheese[J]. Food Microbiology,2019,84:103255. doi: 10.1016/j.fm.2019.103255
|
[31] |
MARTINEZ-RIOS V, PEDERSEN M, PEDRAZZI M, et al. Antimicrobial effect of nisin in processed cheese-quantification of residual nisin by LC-MS/MS and development of new growth and growth boundary model for Listeria monocytogenes[J]. International Journal of Food Microbiology,2021,338:108952. doi: 10.1016/j.ijfoodmicro.2020.108952
|
[32] |
KOUKOU I, MEJLHOLM O, DALGAARD P. Cardinal parameter growth and growth boundary model for non-proteolytic Clostridium botulinum-effect of eight environmental factors[J]. International Journal of Food Microbiology,2021,346:109162. doi: 10.1016/j.ijfoodmicro.2021.109162
|
[33] |
BAJARD S, ROSSO L, FARDEL G, et al. The particular behaviour of Listeria monocytogenes under sub-optimal conditions[J]. International Journal of Food Microbiology,1996,29(2-3):201−211. doi: 10.1016/0168-1605(95)00031-3
|
[34] |
VAN DERLINDEN E, VAN IMPE J F. Modeling growth rates as a function of temperature: Model performance evaluation with focus on the suboptimal temperature range[J]. International Journal of Food Microbiology,2012,158(1):73−78. doi: 10.1016/j.ijfoodmicro.2012.05.015
|
[35] |
AKKERMANS S, NORIEGA F E, LOGIST F, et al. Introducing a novel interaction model structure for the combined effect of temperature and pH on the microbial growth rate[J]. International Journal of Food Microbiology,2017,240:85−96. doi: 10.1016/j.ijfoodmicro.2016.06.011
|
[36] |
任静静, 杨铭伟, 陈云飞, 等. 食源性单增李斯特菌inlA/inlB/inlC基因缺失株的构建及其生物学特性分析[J]. 中国畜牧兽医,2019,46(1):45−53. [REN J J, YANG M W, CHEN Y F, et al. Construction and characterization of inlA/inlB/inlC gene deleted mutant strains of food-borne Listeria monocytogenes[J]. China Animal Husbandry & Veterinary Medicine,2019,46(1):45−53.
|
[37] |
MARTINEZ-RIOS V, GKOGKA E, DALGAARD P. New term to quantify the effect of temperature on pHmin-values used in cardinal parameter growth models for Listeria monocytogenes[J]. Frontiers in Microbiology,2019,10:1510. doi: 10.3389/fmicb.2019.01510
|
[38] |
RATKOWSKY D A, ROSS T. Modelling the bacterial growth/no growth interface[J]. Letters in Applied Microbiology,1995,20(1):29−33. doi: 10.1111/j.1472-765X.1995.tb00400.x
|
[39] |
DING T, YU Y Y, HWANG C A, et al. Modeling the effect of water activity, pH, and temperature on the probability of enterotoxin a production by Staphylococcus aureus[J]. Journal of Food Protection,2016,79(1):148−152. doi: 10.4315/0362-028X.JFP-15-161
|
[40] |
董庆利, 陆冉冉, 汪雯, 等. 基于FSO值对生熟食品交叉污染中单增李斯特菌的危害识别[J]. 现代食品科技,2016,32(11):286−292, 266. [DONG Q L, LU R R, WANG W, et al. Hazard identification of Listeria monocytogenes cross-contamination from raw to cooked food based on food safety objective values[J]. Modern Food Science and Technology,2016,32(11):286−292, 266.
|
[41] |
KAKAGIANNI M, KALANTZI K, BELETSIOTIS E, et al. Development and validation of predictive models for the effect of storage temperature and pH on the growth boundaries and kinetics of Alicyclobacillus acidoterrestris ATCC 49025 in fruit drinks[J]. Food Microbiology,2018,74:40−49. doi: 10.1016/j.fm.2018.02.019
|
[42] |
张文敏, 方太松, 王翔, 等. 食品中微生物间交互模型的研究进展[J]. 食品科学,2020,41(1):277−283. [ZHANG W M, FANG T S, WANG X, et al. Microbial interaction modeling in foods: A review[J]. Food Science,2020,41(1):277−283. doi: 10.7506/spkx1002-6630-20181204-055
|
[43] |
BARANYI J, ROBERTS T A. A dynamic approach to predicting bacterial growth in food[J]. International Journal of Food Microbiology,1994,23:277−294. doi: 10.1016/0168-1605(94)90157-0
|
[44] |
BARANYI J, ROBINSON T P, KALOTI A, et al. Predicting growth of Brochothrix thermosphacta at changing temperature[J]. International Journal of Food Microbiology,1995,27(1):61−75. doi: 10.1016/0168-1605(94)00154-X
|
[45] |
GOUGOULI M, KOUTSOUMANIS K P. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions[J]. International Journal of Food Microbiology,2010,140(2-3):254−262. doi: 10.1016/j.ijfoodmicro.2010.03.021
|
[46] |
KAKAGIANNI M, GOUGOULI M, KOUTSOUMANIS K P. Development and application of Geobacillus stearothermophilus growth model for predicting spoilage of evaporated milk[J]. Food Microbiology,2016,57:28−35. doi: 10.1016/j.fm.2016.01.001
|
[47] |
KAKAGIANNI M, KOUTSOUMANIS K P. Assessment of Escherichia coli O157:H7 growth in ground beef in the Greek chill chain[J]. Food Res Int,2019,123:590−600. doi: 10.1016/j.foodres.2019.05.033
|
[48] |
LIU Y, WANG X, LIU B, et al. One-step analysis for Listeria monocytogenes growth in ready-to-eat braised beef at dynamic and static conditions[J]. Journal of Food Protection,2019,82(11):1820−1827. doi: 10.4315/0362-028X.JFP-18-574
|
[49] |
SANDOVAL-CONTRERAS T, IÑIGUEZ-MORENO M, GARRIDO-SÁNCHEZ L, et al. Predictive model for the effect of environmental conditions on the postharvest development of Colletotrichum gloeosporioides strains isolated from papaya (Carica papaya L.)[J]. Journal of Food Protection,2020,83(9):1495−1504. doi: 10.4315/JFP-19-493
|
[50] |
姜春新, 王雅莹, 洪小利, 等. 柠檬酸和乙酸对致腐假单胞菌的抗生物被膜研究[J]. 核农学报,2021,35(1):120−127. [JIANG C X, WANG Y Y, HONG X L, et al. Anti-biofilm study of citric acid and acetic acid against Pseudomonas putrefaciens[J]. Journal of Nuclear Agricultural Science,2021,35(1):120−127. doi: 10.11869/j.issn.100-8551.2021.01.0120
|
[51] |
熊成, 董庆利, 姚远. 乳酸钠对铜绿假单胞菌生长的影响[J]. 食品科学,2012,33(13):144−146. [XIONG C, DONG Q L, YAO Y. Effect of sodium lactate on the growth of Pseudomonas aeruginosa[J]. Food Science,2012,33(13):144−146.
|
[52] |
姚远, 董庆利, 熊成. 乳酸钠抑制铜绿假单胞菌生长的机理[J]. 食品与发酵工业,2012,38(3):54−57. [YAO Y, DONG Q L, XIONG C. Mechanism of growth inhibition of Pseudomonas aeruginosa by sodium lactate[J]. Food and Fermentation Industries,2012,38(3):54−57.
|
[53] |
董庆利, 姚远, 赵勇, 等. 铜绿假单胞菌的温度、pH值和乳酸钠主参数模型构建[J]. 农业机械学报,2014,45(1):197−202. [DONG Q L, YAO Y, ZHAO Y, et al. Modeling the cardinal parameters model of temperature, pH and sodium lactate of Pseudomonas aeruginosa[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(1):197−202. doi: 10.6041/j.issn.1000-1298.2014.01.031
|
[54] |
VALÍK Ľ, AČAI P, LIPTÁKOVÁ D. Modelling the effects of lactic acid, sodium benzoate and temperature on the growth of Candida maltosa[J]. Letters in Applied Microbiology,2017,65(5):453−460. doi: 10.1111/lam.12803
|
[55] |
朱娟, 佘鹏飞, 谭芮辰, 等. 3种液体培养基对表皮葡萄球菌生物膜形成的影响[J]. 临床检验杂志,2018,36(4):245−247. [ZHU J, SHE P F, TAN R C, et al. Effects of three kinds of liquid media on the biofilm formation of Staphylococcus epidermidis[J]. Chinese Journal of Clinical Laboratory Science,2018,36(4):245−247.
|
[56] |
严一舟, 袁中伟, 何泾正, 等. 百里香酚联合苯唑西林对耐甲氧西林金黄色葡萄球菌(MRSA)生物被膜的影响[J]. 微生物学通报,2020,47(12):4205−4218. [YAN Y Z, YUAN Z W, HE J Z, et al. Effect of thymol combined with oxacillin on methicillin-resistant Staphylococcus aureus (MRSA) biofilm[J]. Microbiology China,2020,47(12):4205−4218.
|
[57] |
曹启航, 刘圆园, 孙亚楠, 等. 不同培养条件对单核细胞增生李斯特菌生物被膜形成的影响[J]. 中国兽医科学,2020,50(12):1563−1571. [CAO Q H, LIU Y Y, SUN Y N, et al. Effect of different culture conditions on the formation of biofilm of Listeria monocytogenes[J]. Chinese Veterinary Science,2020,50(12):1563−1571.
|
[58] |
TANGO C N, AKKERMANS S, HUSSAIN M S, et al. Modeling the effect of pH, water activity, and ethanol concentration on biofilm formation of Staphylococcus aureus[J]. Food Microbiology,2018,76:287−295. doi: 10.1016/j.fm.2018.06.006
|
[59] |
WEISE T, REINECKE J M, SCHUSTER S, et al. Optimizing turbidostatic microalgal biomass productivity: A combined experimental and coarse-grained modelling approach[J]. Algal Research,2019,39:101439. doi: 10.1016/j.algal.2019.101439
|
[60] |
WEISE T, GREWE C, PFAFF M. Experimental and model-based analysis to optimize microalgal biomass productivity in a pilot-scale tubular photobioreactor[J]. Front Bioeng Biotechnol,2020,8:453. doi: 10.3389/fbioe.2020.00453
|
1. |
张黎梅,汪云飞,陈艳,董天秋,马文思,陈娴. HPLC-DAD法测定养生茶中的双氯芬酸钠. 食品与发酵科技. 2025(01): 169-172 .
![]() | |
2. |
李肖斐. 超高效液相色谱-串联质谱法测定酵素梅中12种酚汀(酚丁)、酚酞及其酯类衍生物或类似物. 食品安全导刊. 2025(07): 105-109 .
![]() |