GAO Yunlong, XU Menghao, ZHAO Xiangzhong. Optimization of Preparation Process of Antioxidant Peptides in the Visceral Mass of Cucumaria frondosa by Response Surface Methodology and Its Composition Analysis[J]. Science and Technology of Food Industry, 2022, 43(1): 235−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050159.
Citation: GAO Yunlong, XU Menghao, ZHAO Xiangzhong. Optimization of Preparation Process of Antioxidant Peptides in the Visceral Mass of Cucumaria frondosa by Response Surface Methodology and Its Composition Analysis[J]. Science and Technology of Food Industry, 2022, 43(1): 235−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050159.

Optimization of Preparation Process of Antioxidant Peptides in the Visceral Mass of Cucumaria frondosa by Response Surface Methodology and Its Composition Analysis

More Information
  • Received Date: May 19, 2021
  • Available Online: November 02, 2021
  • Using the protein of Cucumaria frondosa visceral mass as raw material, antio-xidant peptides were prepared by enzymatic hydrolysis with complex protease. On the basis of single factor experiments, the enzymatic hydrolysis process conditions were optimized by response surface methodology, and its antioxidant activity, molecular weight distribution and amino acid composition were analyzed. The results showed that the optimum process conditions were substrate mass fraction 4.4%, enzyme dosage 4887 U/g, pH7.0, enzymolysis temperature 56 ℃ and enzymolysis time 4.2 h. Under these conditions, the DPPH radical scavenging rate of 2 mg/mL hydrolysate was 89.18%±0.11%, the ABTS free radical scavenging rate and Fe2+ chelating rate of 0.5 mg/mL hydrolysate were 68.11%±0.12% and 72.59%±0.08%, the hydroxyl radical scavenging rate and reducing power of 1.5 mg/mL hydrolysate were 71.86%±0.09% and 0.7473±0.0105; Molecular weight distribution and amino acid analysis showed that the antioxidant peptides in the visceral mass of Cucumaria frondosa, peptides with a molecular weight of less than 1000 Da accounted for 94.26%, they were rich in acidic and hydrophobic amino acids and had high antioxidant activity and nutritional value. This study provides a technical reference for the development of deep processing industry of Cucumaria frondosa.
  • [1]
    曹建, 贾子才, 丛培旭, 等. 冰岛刺参和南非花刺参脑苷脂分子种的比较[J]. 中国海洋大学学报(自然科学版),2016,46(9):38−44. [CAO J, JIA Z C, CONG P X, et al. Comparison of cerebroside molecular species from sea cucumbers Cucumaria frondosa and Stichopus variegatus [J]. Periodical of Ocean University of China,2016,46(9):38−44.
    [2]
    徐梦豪, 侯召华, 林荣芳, 等. 冰岛刺参抗癌物质Frondoside A的研究进展[J]. 特产研究,2020,42(5):71−77. [XU M H, HOU Z H, LIN R F, et al. Advances in research on the anticancer substance Frontoside A of Cucumaria frondosa[J]. Special Wild Economic Animal and Plant Research,2020,42(5):71−77.
    [3]
    THARINDU R L S, DEEPLKA D, FEREIDOON S. Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa)[J]. Food Production, Processing and Nutrition,2021,3(1):3. doi: 10.1186/s43014-020-00049-3
    [4]
    HOSSAIN A, DAVE D, SHAHIDI F. Northern sea cucumber (Cucumaria frondosa): A potential candidate for functional food, nutraceutical, and pharmaceutical sector[J]. Marine Drugs,2020,18(5):274. doi: 10.3390/md18050274
    [5]
    徐梦豪, 梁艳, 姚艳艳, 等. 响应面法优化亚临界萃取冰岛刺参内脏油脂工艺[J]. 食品与机械,2021,37(4):165−170. [XU M H, LIANG Y, YAO Y Y, et al. Optimization of subcritical extraction of oil from Cucumaria frondosa visceral by response surface[J]. Food & Machinery,2021,37(4):165−170.
    [6]
    LIU Y, DAVE D, TRENHOLM S, et al. Effect of drying on nutritional composition of atlanticsea cucumber (Cucumaria frondosa) viscera derived from new found land fisheries[J]. Processes,2021,9(703):703.
    [7]
    党仪安, 王文亮, 弓志青, 等. 食用菌生物活性肽制备及功能活性研究进展[J]. 食品工业,2019,40(8):228−231. [DANG Y A, WANG W L, GONG Z Q, et al. Advances in preparation and functional activity of bioactive peptide from edible fungus[J]. The Food Industry,2019,40(8):228−231.
    [8]
    HEYMICH M L, NIL L, HAHN D, et al. Antioxidative, antifungal and additive activity of the antimicrobial peptides leg1 and leg2 from chickpea[J]. Foods,2021,10(3):585. doi: 10.3390/foods10030585
    [9]
    BABA W N, BABY B, MUDGIL P, et al. Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides[J]. LWT- Food Science and Technology,2021(1):111135.
    [10]
    HUI S, HU X Q, ZHENG H, et al. Two novel antioxidant peptides derived from Arca subcrenata against oxidative stress and extend lifespan in Caenorhabditis elegans[J]. Journal of Functional Foods,2021(81):104462.
    [11]
    叶盛旺, 杨最素, 李维, 等. 青蛤免疫调节肽的酶解制备工艺研究[J]. 食品工业,2018,39(5):1−4. [YE S W, YANG Z S, LI W, et al. Process optimization for preparation of immunoregulatory peptides from cyclinasinensis by enzymatic hydrolysis[J]. The Food Industry,2018,39(5):1−4.
    [12]
    李娜, 周德庆, 刘楠, 等. 鳕鱼鱼鳔抗氧化肽制备工艺研究[J]. 渔业科学进展,2020,41(2):191−199. [LI N, ZHOU D Q, LIU N, et al. Research on preparation of antioxidant peptides from cod swim bladder[J]. Progress in Fishery Sciences,2020,41(2):191−199.
    [13]
    李亚会, 李积华, 吉宏武, 等. 远东拟沙丁鱼抗氧化肽的分离纯化及结构解析[J]. 中国食品学报,2021,21(2):229−238. [LI Y H, LI J H, JI H W, et al. Isolation, purification and structural analysis of antioxidant peptides from Sardinops sagax[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(2):229−238.
    [14]
    SIERRA L, FAN H, ZAPATA J, et al. Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp. ) scale[J]. LWT,2021:146.
    [15]
    罗春萍, 陆友利, 王星星. 苯酚-硫酸法快速测定多糖方法的优化[J]. 化工管理,2021(3):90−91. [LUO C P, LU Y L, WANG X X, et al. Optimization of rapid determination of polysaccharides by phenol-sulfuric acid method[J]. Chemical Enterprise Management,2021(3):90−91.
    [16]
    李云嵌, 杨曦, 刘江, 等. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业,2021,47(9):128−135. [LI Y Q, YANG X, LIU J, et al. Ultrasonic-assisted alkaline extraction of Plukenetia volubilis protein isolate and its processing properties[J]. Food and Fermentation Industries,2021,47(9):128−135.
    [17]
    包斐, 孙丽霞, 孙建华, 等. 长蛇鲻鱼蛋白水解制备抗氧化肽工艺研究[J]. 食品科技,2019,44(8):241−247. [BAO F, SUN L X, SUN J H, et al. Optimization of technology conditions for antioxidant peptides from protein hydrolysates of lizard fish[J]. Food Science and Technology,2019,44(8):241−247.
    [18]
    ZHUANG H, TANG N, YUAN Y. Purification and identification of antioxidant peptides from corn gluten meal[J]. Journal of Functional Foods,2013,5(4):1810−1821. doi: 10.1016/j.jff.2013.08.013
    [19]
    SARABABDI K, MAHOONAK A K, HAMISHEKAR H, et al. Microencapsulation of casein hydrolysates: Physicochemical, antioxidant and microstructure properties[J]. Jouenal of Food Engineering,2018,23:86−95.
    [20]
    李斌, 李元甦, 孟宪军, 等. 北五昧子藤茎三萜抗氧化活性研究[J]. 食品工业科技,2012,33(3):121−123. [LI B, LI Y S, MENG X J, et al. Study on antioxidant activity of triterpenes from caculis of Schisandra chinensis (Turcz.) baill[J]. Science and Technology of Food Industry,2012,33(3):121−123.
    [21]
    ZHENG Z J, LI J X, LI J W, et al. Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes[J]. Food Hydrocolloids,2019,97:105222. doi: 10.1016/j.foodhyd.2019.105222
    [22]
    YOU L J, ZHAO M M, CUI C, et al. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates[J]. Innovative Food Science & Emerging Technologies,2009,10(2):235−240.
    [23]
    林栋, 李丽娟, 何英, 等. 芡实多肽的分步酶解法制备及抗氧化活性研究[J]. 食品科技,2021,46(2):217−224. [LIN D, LI L J, HE Y, et al. Two-step enzymatic preparation and antioxidant activity in vitro of peptides from Euryale ferox[J]. Food Science and Technology,2021,46(2):217−224.
    [24]
    王颖颖, 李迎秋. 酶解牡丹籽蛋白抗氧化特性的研究[J]. 中国调味品,2020,45(12):159−164. [WANG Y Y, LI Y Q. Study on antioxidant characteristics of enzymatic hydrolysis of tree peony seed protein[J]. China Condiment,2020,45(12):159−164. doi: 10.3969/j.issn.1000-9973.2020.12.034
    [25]
    何峰, 李婉茹, 武贝贝. 对二氨基苯甲醛比色法测定羊肚菌中色氨酸含量[J]. 食品工业,2021,42(5):426−429. [HE F, LI W R, WU B B. Determination of tryptophan in Morchella by p-diaminobenzaldehydecolorimetry[J]. The Food Industry,2021,42(5):426−429.
    [26]
    黄明, 王璐莎. 动物蛋白源抗氧化肽的研究进展[J]. 中国农业科学,2013,46(22):4763−4773. [HUANG M, WANG L S. A review of the antioxidant peptides derived from animal protein[J]. Scientia AgriculturaSinica,2013,46(22):4763−4773. doi: 10.3864/j.issn.0578-1752.2013.22.014
    [27]
    RAJAPAKSE N, MENDIS E, BYUN H G, et al. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems[J]. Journal of Nutritional Biochemistry,2005,16(9):562−569. doi: 10.1016/j.jnutbio.2005.02.005
    [28]
    PAN X Y, WANG Y M, LI L, et al. Four antioxidant peptides from protein hydrolysate of red stingray (Dasyatis akajei) cartilages: Isolation, identification, and in vitro activity evaluation[J]. Mar Drugs,2019,17(5):263. doi: 10.3390/md17050263
    [29]
    WANG X Q, YU H H, XING R, et al. Preparation and identification of antioxidative peptides from pacific herring (Clupea pallasii) protein[J]. Molecules,2019,24(10):1946. doi: 10.3390/molecules24101946
    [30]
    ZHANG L, ZHAO G X, ZHAO Y Q, et al. Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna(Katsuwonus pelamis) head[J]. Antioxidants (Basel),2019,8(8):318. doi: 10.3390/antiox8080318
    [31]
    包斐. 长蛇鲻鱼肉蛋白酶解制备抗氧化肽的研究[D]. 南宁: 广西大学, 2019.

    BAO F. Study on the preparation of antioxidant peptides by enzymatic hydrolysis of anchovy[D]. Nanning: Guangxi University, 2019.
    [32]
    UMAVAPARVATHI S, MEENAKSHI S, VIMALIAJ V, et al. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata)[J]. Biomedicine & Preventive Nutrition,2014,4(3):343−353.
  • Cited by

    Periodical cited type(9)

    1. 向芳. 食品减盐策略研究进展. 食品与发酵工业. 2024(06): 350-358 .
    2. 赵亚丽,张香美,卢涵,杨贝,文港. 传统腌腊肉制品质量安全管理研究. 食品与机械. 2023(01): 55-60+156 .
    3. 刘东,夏金龙. 低钠酱鹿肉的配方优化及贮藏期特性研究. 中国调味品. 2023(03): 67-74 .
    4. 李智,牛超杰,邹爱军,常超. 肉制品加工减盐技术及其应用. 武汉轻工大学学报. 2023(04): 31-38 .
    5. 张彦慧,郑红霞,刘楠,高彦祥,毛立科. 胶体结构设计在减盐食品中的应用. 食品科学. 2022(01): 213-222 .
    6. 吕广英,孔君,郑润愽. 一种低钠休闲香肠的加工技术研究. 肉类工业. 2022(05): 16-19 .
    7. 芮李彤,李海静,张婷婷,郭琦,李子豪,夏秀芳. 食盐对肉制品品质形成的作用及减盐技术研究进展. 肉类研究. 2022(07): 61-67 .
    8. 孙悦,李震,王鹏,徐幸莲. 响应面优化减盐鸡肉松热加工工艺及品质测定. 食品工业科技. 2022(20): 263-273 . 本站查看
    9. 周平萍. 咸味剂咸度分析研究方法进展. 现代食品. 2022(17): 23-26+37 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (189) PDF downloads (12) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return