ZHAO Mengna, YANG Xinyue, FENG Jia, et al. Application and Mechanism of Nanofluid in Liquid Food Sterilization[J]. Science and Technology of Food Industry, 2022, 43(8): 481−487. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050142.
Citation: ZHAO Mengna, YANG Xinyue, FENG Jia, et al. Application and Mechanism of Nanofluid in Liquid Food Sterilization[J]. Science and Technology of Food Industry, 2022, 43(8): 481−487. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050142.

Application and Mechanism of Nanofluid in Liquid Food Sterilization

More Information
  • Received Date: May 18, 2021
  • Available Online: February 11, 2022
  • Nanofluid is an emerging fluid that can replace the traditional medium in heat exchanger. The heat exchanger using nanofluid as the heat transfer medium has the characteristics of high heat transfer efficiency, short sterilization time and can better maintain the sensory and nutritional characteristics of food based on the characteristic of nanofluid such as good stability, reusability, and energy saving. The fluid has been successfully applied to the sterilization of liquid foods (milk and juice). The application of different types of nanofluids, such as multi-wall carbon nanotubes (MWCNT)/water, TiO2/water and Al2O3/water nanofluids in liquid foods sterilization are outlined. Meanwhile, the methods for preparing nanofluids and improving the stability of nanofluids are also reviewed. At last, the thermal conductivity enhancement mechanism according to its Brownian motion, liquid film layer and nanoparticle chain structure of nanofluid as well as the sterilization mechanism of nanofluids based on the reactive oxygen effect and the interaction between nanoparticle and cell wall, cell membrane and cell contents are importantly summarized. It is expected to provide theoretical guidance for the application of nanofluids in food and improve food safety.
  • [1]
    LIANG X N, CHENG J, SUN J, et al. Reduction of immunoreactivity and improvement of the nutritional qualities in cow milk products by enzymatic hydrolysis[J]. LWT,2021:150.
    [2]
    NEMESIO V R, ALBERTO R B, ENRIQUE R A, et al. Study of nutritional quality of pomegranate (Punica granatum L.) juice using 1 H NMR-based metabolomic approach: A comparison between conventionally and organically grown fruits[J]. LWT,2020:134.
    [3]
    LINDSAY D, ROBERTSON R, FRASER R, et al. Heat induced inactivation of microorganisms in milk and dairy products[J]. International Dairy Journal,2021:121.
    [4]
    SEYED M B H, MOHAMMAD R M, REZA R, et al. Statistical modeling of the inactivation of spoilage microorganisms during ohmic heating of sour orange juice[J]. LWT,2019,111:821−828. doi: 10.1016/j.lwt.2019.04.077
    [5]
    袁磊, 何国庆. 原料奶中嗜冷菌产腐败酶的能力及腐败酶的耐热性研究[C]//2017中国食品科学技术学会第十四届年会暨第九届中美食品业高层论坛论文摘要集. 北京: 中国食品科学技术学会, 2017: 329.

    YUAN L, HE G Q. Study on the ability of psychrotrophic bacteria in raw milk to produce spoilage enzyme and the heat resistance of spoilage enzyme[C]// 2017 The 14th Annual Meeting of the Chinese Society for Food Science and Technology and the 9th China-US Food Industry High-level Forum Paper Abstracts Collection. Beijing: Chinese Institute of Food Science and Technology, 2017: 329.
    [6]
    YU K B, ZHOU L, SUN Y F, et al. Anti-browning effect of Rosa roxburghii on apple juice and identification of polyphenol oxidase inhibitors[J]. Food Chemistry,2021:359.
    [7]
    JAFARI S M, SAREMNEJAD F, DEHNAD D. Nanofluid thermal processing of watermelon juice in a shell and tube heat exchanger and evaluating its qualitative properties[J]. Innovative Food Science & Emerging Technologies,2017,42:173−179.
    [8]
    杨晋辉, 李松励, 郑楠, 等. 热处理对牛乳成分的影响以及热敏感指标的变化研究进展[J]. 食品科学,2017,38(7):302−308. [YANG J H, LI S L, ZHENG N, et al. Effect of heat treatment on milk components and changes in heat-sensitive components: A review[J]. Food Science,2017,38(7):302−308. doi: 10.7506/spkx1002-6630-201707048
    [9]
    杨姗姗, 丁瑞雪, 史海粟, 等. 不同热处理条件对巴氏杀菌乳风味品质的影响[J]. 食品科学,2020,41(24):1−10. [YANG S S, DING R X, SHI H L, et al. Effect of different heat treatment conditions on flavor and quality of pasteurized milk[J]. Food Science,2020,41(24):1−10. doi: 10.7506/spkx1002-6630-20200706-078
    [10]
    彭邦远, 张洪礼, 孙小静, 等. 热处理刺梨汁香气物质的SPME-GC-MS检测与主成分分析[J]. 食品科学,2018,39(6):230−236. [PENG B Y, ZHANG H L, SUN X J, et al. Analysis of volatile aroma compounds of heated Rosa roxbuighii tratt juice by solid-phase microextraction combined with gas chromatography-mass spectrometry and principal component analysis[J]. Food Science,2018,39(6):230−236. doi: 10.7506/spkx1002-6630-201806036
    [11]
    SAIDAB Z, SUNDARC L S, TIWARID A K, et al. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids[J]. Physics Reports,2021(2).
    [12]
    SALARI S, JAFARI S M. Application of nanofluids for thermal processing of food products[J]. Trends in Food Science & Technology,2020,97:100−113.
    [13]
    RAMANUJAM L A, PATTAYIL A J B, CHANDAN B A. A review of the recent progress on thermal conductivity of nanofluid[J]. Journal of Molecular Liquids,2021:116929.
    [14]
    MUHAMMAD N M, SIDIK N A C. Applications of nanofluids and various minichannel configurations for heat transfer improvement: A review of numerical study[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences,2018,46:49−61.
    [15]
    汪靖凯, 赵蕾, 马丽斯. Cu/Al纳米流体的制备及导热性能[J]. 应用化工,2021,50(3):620−624,629. [WANG J K, ZHAO L, MA L S. Preparation and thermal conducting performance of Cu/Al nanofluids[J]. Applied Chemical Industry,2021,50(3):620−624,629. doi: 10.3969/j.issn.1671-3206.2021.03.012
    [16]
    RAMIN R, ALIREZA M, REZA B, et al. An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles[J]. Journal of Cleaner Production,2019,206:1089−1100. doi: 10.1016/j.jclepro.2018.09.205
    [17]
    舒宇. 水基石墨烯纳米流体的热物性及流动换热特性研究[D]. 绵阳: 西南科技大学, 2019.

    SHU Y. An experimental study on the thermal properties and heat transfer characteristics of water-based graphene nanofluids[D]. Mianyang: Southwest University of Science and Technology, 2019.
    [18]
    JAFARI S M, JABARI S S, DEHNAD D, et al. Heat transfer enhancement in thermal processing of tomato juice by application of nanofluids[J]. Food and Bioprocess Technology,2016,10(2):307−316.
    [19]
    JAFARI S M, JABARI S S, DEHNAD D, et al. Effects of thermal processing by nanofluids on vitamin C, total phenolics and total soluble solids of tomato juice[J]. Journal of Food Science and Technology,2017,54(3):679−686. doi: 10.1007/s13197-017-2505-z
    [20]
    JABBARI S S, JAFARI S M, DEHNAD D, et al. Changes in lycopene content and quality of tomato juice during thermal processing by a nanofluid heating medium[J]. Journal of Food Engineering,2018,230:1−7. doi: 10.1016/j.jfoodeng.2018.02.020
    [21]
    TAMILSELVAN K, SIVABALAN B, PRAKASH R, et al. Experimental analysis of heat transfer rate in corrugated plate heat exchanger using nanofluid in milk pastuerization process[J]. International Journal of Engineering and Applied Sciences,2017,4(5):72−75.
    [22]
    LEE J H, HWANG K S, JANG S P, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles[J]. International Journal of Heat and Mass Transfer,2008,51(11-12):2651−2656. doi: 10.1016/j.ijheatmasstransfer.2007.10.026
    [23]
    ZHU D S, LI X F, WANG N, et al. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids[J]. Current Applied Physics,2009,9(1):131−139. doi: 10.1016/j.cap.2007.12.008
    [24]
    APARNA Z, MICHAEL M, PABI S K, et al. Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: An experimental investigation and development of new correlation function[J]. Powder Technology,2019,343:714−722. doi: 10.1016/j.powtec.2018.11.096
    [25]
    ESFE M H, SAEDODIN S, MAHIAN O, et al. Thermal conductivity of Al2O3/water nanofluids[J]. Journal of Thermal Analysis & Calorimetry,2014,117(2):675−681.
    [26]
    AFIFA R, SALEH K, MONCEF B, et al. Study of thermal conductivity of synthesized Al2O3-water nanofluid by pulsed laser ablation in liquid[J]. Journal of Molecular Liquids,2020:304.
    [27]
    ESUMI K, ISHIGAMI M, NAKAJIMA A, et al. Chemical treatment of carbon nanotubes[J]. Carbon,1996,34(2):279−281. doi: 10.1016/0008-6223(96)83349-5
    [28]
    TABARI Z T, HERIS S Z. Heat transfer performance of milk pasteurization plate heat exchangers using MWCNT/water nanofluid[J]. Journal of Dispersion Science & Technology,2015,36(2):196−204.
    [29]
    TABARI Z T, HERIS S Z, MORADI M, et al. The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries[J]. Renewable and Sustainable Energy Reviews,2016,58:1318−1326. doi: 10.1016/j.rser.2015.12.292
    [30]
    KUMAR N, SONAWANE S S. Experimental study of thermal conductivity and convective heat transfer enhancement using CuO and TiO2 nanoparticles[J]. International Communications in Heat and Mass Transfer,2016,76:98−107. doi: 10.1016/j.icheatmasstransfer.2016.04.028
    [31]
    陈利. 多壁碳纳米管/聚氯乙烯复合材料的制备及性能[J]. 高分子材料科学与工程,2009,25(4):140−143. [CHEN L. Preparation and properties of multi-walled carbon nanotube/polyvinyl chloride composite[J]. Polymer Materials Science and Engineering,2009,25(4):140−143. doi: 10.3321/j.issn:1000-7555.2009.04.039
    [32]
    LIU Y, HE L, MUSTAPHA A, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7[J]. Journal of Applied Microbiology,2009,107(4):1193−1201. doi: 10.1111/j.1365-2672.2009.04303.x
    [33]
    ZHANG L L, JIANG Y H, DING Y L, et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli[J]. Journal of Nanoparticle Research,2010,12(5):1625−1636. doi: 10.1007/s11051-009-9711-1
    [34]
    JONES N, RAY B, RANJIT K T, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms[J]. FEMS Microbiology Reviews,2008,279(1):71−76. doi: 10.1111/j.1574-6968.2007.01012.x
    [35]
    SAMARSHI C, PRADIPTA K P. Stability of nanofluid: A review[J]. Applied Thermal Engineering,2020:174.
    [36]
    YU W, XIE H Q, LIU L H. A review on nanofluids: Preparation, stability mechanisms, and applications[J]. Journal of Nanomaterials,2011,2012:1687−4110.
    [37]
    徐瑛, 王为旺, 黄云云, 等. 高导热纳米流体的制备与应用研究进展[J]. 功能材料,2019,50(5):5012−5017. [XU Y, WANG W W, HUANG Y Y, et al. Research progress of preparation and application of high thermal conductivity nanofluid[J]. Functional Materials,2019,50(5):5012−5017. doi: 10.3969/j.issn.1001-9731.2019.05.003
    [38]
    EASTMAN J A, CHOI S U S, LI S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Applied Physics Letters,2001,78(6):718−720. doi: 10.1063/1.1341218
    [39]
    YU W, XIE H, WANG X, et al. Highly efficient method for preparing homogeneous and stable colloids containing graphene oxide[J]. Nanoscale Research Letters,2010,6(1):47.
    [40]
    DEY D, KUMAR P, SAMANTARAY S. A review of nanofluid preparation, stability, and thermo-physical properties[J]. Heat Transfer-Asian Research,2017,46(8):1413. doi: 10.1002/htj.21282
    [41]
    SEZER N, ATIEH M A, KOC M. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids[J]. Powder Technology,2018,344:404−431.
    [42]
    TIWARI A K, PANDYA N S, SAID Z, et al. 4S consideration (synthesis, sonication, surfactant, stability) for the thermal conductivity of CeO2 with MWCNT and water based hybrid nanofluid: An experimental assessment[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2021:610.
    [43]
    WEN D S, DING Y L. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids[J]. Journal of Nanoparticle Research,2005,7(2-3):265−274. doi: 10.1007/s11051-005-3478-9
    [44]
    HWANG Y, LEE J K, LEE C H, et al. Stability and thermal conductivity characteristics of nanofluids[J]. Thermochimica Acta,2007,455(1−2):70−74. doi: 10.1016/j.tca.2006.11.036
    [45]
    RUAN B, JACOBI A M. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions[J]. Nanoscale Research Letters,2012,7(1):127. doi: 10.1186/1556-276X-7-127
    [46]
    HASHIMOTO S, HARADA M, HIGUCHI Y, et al. Enhancement mechanism of convective heat transfer via nanofluid: An analysis by means of synchrotron radiation imaging[J]. International Journal of Heat and Mass Transfer,2020,159:120081. doi: 10.1016/j.ijheatmasstransfer.2020.120081
    [47]
    BOBBO S, FEDELE L, BENETTI A, et al. Viscosity of water based SWCNH and TiO2 nanofluids[J]. Experimental Thermal and Fluid Science,2012,36:65−71. doi: 10.1016/j.expthermflusci.2011.08.004
    [48]
    FARBOD M, ASL R K, ABADI A R N. Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,474:71−75.
    [49]
    钟强, 董春晖, 黄志博, 等. 酸性电解水保鲜机理及其在水产品中应用效果的研究进展[J]. 食品科学,2021,42(5):288−295. [ZHONG Q, DONG C H, HUANG Z B, et al. Recent progress in the preservation mechanism of acidic electrolyzed water and its application in the preservation of aquatic products[J]. Food Science,2021,42(5):288−295. doi: 10.7506/spkx1002-6630-20200410-135
    [50]
    李伽炜. 纳米流体增强导热系数机理的探究[D]. 北京: 华北电力大学, 2016.

    LI J W. Study on mechanism of thermal conductivity enhancement of nanofluids[D]. Beijing: North China Electric Power University, 2016.
    [51]
    华珍, 王毅. 纳米流体热传递特性的研究进展[J]. 机床与液压,2018,46(1):147−152. [HUA Z, WANG Y. Research progress in nanofluids heat transfer property[J]. Machine Tool & Hydraulics,2018,46(1):147−152. doi: 10.3969/j.issn.1001-3881.2018.01.031
    [52]
    ZHANG L L, QI H, YAN Z X, et al. Sonophotocatalytic inactivation of E. coli using ZnO nanofluids and its mechanism[J]. Ultrasonics Sonochemistry,2017,34:232−238. doi: 10.1016/j.ultsonch.2016.05.045
  • Cited by

    Periodical cited type(4)

    1. 黄碧飞,李洋,胡泽茜. 玻璃态液氮速冻对蓝莓品质特性的影响. 食品科学. 2024(06): 225-232 .
    2. 李国林,李丹丹,王成有,何扬波,李咏富,陈丽梅. 两种不同加工方式杨梅汤抗氧化及风味品质比较. 现代食品科技. 2024(05): 212-220 .
    3. 张泽雄,丘苑新,莫观连,陈彩云,柳建良,王琴,钟乐,谢宏峰. 鱼花生大豆废弃物发酵肥的制备及其对桃品质的影响. 园艺学报. 2024(10): 2386-2400 .
    4. 李宾,周显青,韩佳静. 实心麻球外观、内部结构及食用品质的影响因素与评价方法研究. 食品安全质量检测学报. 2023(19): 68-77 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (161) PDF downloads (20) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return