QUE Fei, TAO Wenjing, FENG Wenjie. Preparation and Biological Activities of Low Molecular Weight Brown Algae[J]. Science and Technology of Food Industry, 2022, 43(2): 226−232. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050125.
Citation: QUE Fei, TAO Wenjing, FENG Wenjie. Preparation and Biological Activities of Low Molecular Weight Brown Algae[J]. Science and Technology of Food Industry, 2022, 43(2): 226−232. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050125.

Preparation and Biological Activities of Low Molecular Weight Brown Algae

More Information
  • Received Date: May 16, 2021
  • Available Online: November 19, 2021
  • The polysaccharide was degraded by ascorbic acid and hydrogen peroxide, and the optimal degradation conditions were obtained by the index of DPPH free radical scavenging rate. Then the degradation products were classified by ultrafiltration to obtain different molecular weight components, and their activities were analyzed. The optimal degradation conditions were H2O2-VC 20 mmol/L, 45 ℃ and 3 h. Under these conditions, the DPPH free radical scavenging rate reached 61.23%, and the yield of degradation products was 73.16%. Electrophoretic results showed that the bands of the degraded polysaccharides were obviously in the low molecular weight region. Then the degradation products were classified into four different molecular weight fractions, as <5 kDa, 5~10 kDa, 10~30 kDa and >30 kDa by ultrafiltration. There were significant differences among the molecular weight segments (P<0.05), especially the <5 kDa component (main component 2.140×103 Da, 29.6%) had the best biological activity. The DPPH free radical scavenging rate was 59.27%, and the moisture retention rate was 75.75% after 60 h, the tyrosinase inhibition rate was 65.28%. The content of uronic acid of the <5 kDa component decreased slightly compared with polysaccharides. The results could provide theoretical basis for the application of polysaccharides in functional food and other fields.
  • [1]
    ARUNKUMAR K, RAJ R, RAJA R, et al. Brown seaweeds as a source of anti-hyaluronidase compounds[J]. South African Journal of Botany,2021,139:470−477. doi: 10.1016/j.sajb.2021.03.036
    [2]
    MANIKANDAN R, PARIMALANANDHINI D, MAHALAKSHMI K, et al. Studies on isolation, characterization of fucoidan from brown algae Turbinaria decurrens and evaluation of it's in vivo and in vitro anti-inflammatory activities[J]. International Journal of Biological Macromolecules,2020,160:1263−1276. doi: 10.1016/j.ijbiomac.2020.05.152
    [3]
    JANUARY G G, NAIDOO R K, KIRBY-MCCULLOUGH B, et al. Assessing methodologies for fucoidan extraction from South African brown algae[J]. Algal Research,2019,40:98−102.
    [4]
    ZHOU C S, YU X J, ZHANG Y Z, et al. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea[J]. Carbohydrate Polymers,2012,87(3):2046−2051. doi: 10.1016/j.carbpol.2011.10.026
    [5]
    韩莎莎, 黄臻颖, 沈照鹏, 等. 酶法降解坛紫菜多糖及其产物分析[J]. 食品科学,2015,36(21):145−149. [HAN S S, HUANG Z Y, SHEN Z P, et al. Enzymatic degradation of polysaccharide from Porphyra haitanensis and analysis of its products[J]. Food Science,2015,36(21):145−149. doi: 10.7506/spkx1002-6630-201521028
    [6]
    ZHAO X, XUE C H, LI Z J, et al. Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica[J]. Journal of Applied Phycology,2004,16(2):111−115. doi: 10.1023/B:JAPH.0000044822.10744.59
    [7]
    XUE C H, FANG Y, LIN H, et al. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica[J]. Journal of Applied Phycology,2001,13(1):67−70. doi: 10.1023/A:1008103611522
    [8]
    任立世, 焦思明, 刘洪涛, 等. 岩藻寡糖的制备及抗氧化活性测定[C]//2015中国微生物学会酶工程专业委员会会议论文集. 北京: 中国微生物学会, 2015 : 223.

    REN L S, JIAO S M, LIU H T, et al. Preparation of algae oligosaccharides and its antioxidative activities in vivo. [C]//2015 Collection of essays of Enzyme Engineering Committee of Chinese Society for Microbiology. Beijing: Chinese Society for Microbiology, 2015 : 223.
    [9]
    李玉芬. 褐藻胶寡糖的酶解制备及其应用研究[D]. 福州: 福州大学, 2018.

    LI Y F. Studies on the application of enzymatically prepared alge oligaosaaccharides [D]. Fuzhou: Fuzhou University, 2018.
    [10]
    WANG J, ZHANG Q B, ZHANG Z S, et al. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica[J]. International Journal of Biological Macromolecule,2010,46(1):6−12. doi: 10.1016/j.ijbiomac.2009.10.015
    [11]
    MOHSIN S, MAHADEVAN R, KURUP G M. Free-radical-scavenging activity and antioxidant effect of ascophyllan from marine brown algaePadina tetrastromatica[J]. Biomedicine and Preventive Nutrition,2014,4(1):75−79. doi: 10.1016/j.bionut.2013.08.006
    [12]
    ANASTYUK S D, SHEVCHENKO N M, ERMAKOVA S P, et al. Anticancer activity in vitro of a fucoidan from the brown alga Fucus evanescens and its low-molecular fragments, structurally characterized by tandem mass-spectrometry[J]. Carbohydrate Polymers,2012,87(1):186−194. doi: 10.1016/j.carbpol.2011.07.036
    [13]
    SHAO P, CHEN X X, SUN P L. In vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae[J]. International Journal of Biological Macromolecules,2013,62:155−161. doi: 10.1016/j.ijbiomac.2013.08.023
    [14]
    GOMAA H H A, ELSHOUBAKY G A. Antiviral activity of sulfated polysaccharides carrageenan from some marine seaweeds[J]. International Journal of Current Pharmaceutical Review and Research,2016,7(1):34−42.
    [15]
    BESEDNOVA N N, ZVYAGINTSEVA T N, KUZNETSOVA T A, et al. Marine algae metabolites as promising therapeutics for the prevention and treatment of HIV/AIDS[J]. Metabolites,2019,9(5):87. doi: 10.3390/metabo9050087
    [16]
    HANS N, MALIK A, NAIK S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review[J]. Bioresource Technology Reports,2021,13:100623. doi: 10.1016/j.biteb.2020.100623
    [17]
    QIU J Q, ZHANG H, WANG Z Y. Ultrasonic degradation of polysaccharides from Auricularia auricula and the antioxidant activity of their degradation products[J]. LWT,2019,113:108266. doi: 10.1016/j.lwt.2019.108266
    [18]
    ZHANG Z S, WANG X M, ZHAO M X, et al. Free-radical degradation by Fe2+/VC/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis[J]. Carbohydrate Polymers,2014,112:578−582. doi: 10.1016/j.carbpol.2014.06.030
    [19]
    姜美云, 唐硕, 王婷, 等. 果胶多糖水热法降解及其产物体外抗氧化性评价[J]. 食品科学,2019,40(12):253−259. [JIANG M Y, TANG S, WANG T, et al. Degradation of pectic polysaccharide by hydrothermal treatment and antioxidant activity in vitro of the resulting products[J]. Food Science,2019,40(12):253−259. doi: 10.7506/spkx1002-6630-20180724-295
    [20]
    SHI D L, QI J, ZHANG H, et al. Comparison of hydrothermal depolymerization and oligosaccharide profile of fucoidan and fucosylated chondroitin sulfate fromHolothuria floridana[J]. International Journal of Biological Macromolecules,2019,132:738−747. doi: 10.1016/j.ijbiomac.2019.03.127
    [21]
    屈义, 周斯仪, 冯陶, 等. 鱼鳔糖胺聚糖的提取及其吸湿保湿性能评价[J]. 食品工业科技,2017,38(16):118−125. [QU Y, ZHOU S Y, FENG T, et al. Extraction of glycosaminoglycans from swim bladder and evaluation of the capacities of its hygroscopicity and moisture retention[J]. Science and Technology of Food Industry,2017,38(16):118−125.
    [22]
    CHEN Q R, KOU L Y, WANG F W, et al. Size-dependent whitening activity of enzyme-degraded fucoidan from Laminaria japonica[J]. Carbohydrate Polymers,2019,225:115211. doi: 10.1016/j.carbpol.2019.115211
    [23]
    黄海潮, 王锦旭, 潘创, 等. 超声波辅助过氧化氢法降解坛紫菜多糖及其抗氧化活性的研究[J]. 南方水产科学,2020,16(1):110−119. [HUANG H C, WANG J X, PAN C, et al. Degradation of Porphyra haitanensis polysaccharide by ultrasonic assisted hydrogen peroxide method and its antioxidant activity analysis[J]. South China Fisheries Science,2020,16(1):110−119. doi: 10.12131/20190220
    [24]
    赵雪, 李芳, 董诗竹, 等. 相对低分子质量海带岩藻聚糖硫酸酯的制备及其对纤溶系统的影响[J]. 中国海洋药物,2011,30(3):25−30. [ZHAO X, LI F, DONG S Z, et al. Preparation of relative low molecular mass fucoidan from Laminaria japonica and its effect on the fibrinolytic system[J]. Chinese Journal of Marine Drugs,2011,30(3):25−30.
    [25]
    OUYANG J M, WANG M, LU P, et al. Degradation of sulfated polysaccharide extracted from algal Laminaria japonica and its modulation on calcium oxalate crystallization[J]. Materials Science and Engineering C,2010,30(7):1022−1029. doi: 10.1016/j.msec.2010.05.002
    [26]
    YUE W, YAO P J, WEI Y N, et al. An innovative method for preparation of acid-free-water-soluble low-molecular-weight chitosan (AFWSLMWC)[J]. Food Chemistry,2008,108(3):1082−1087. doi: 10.1016/j.foodchem.2007.11.047
    [27]
    HOU Y, WANG J, JIN W H, et al. Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights[J]. Carbohydrate Polymers,2012,87(1):153−159. doi: 10.1016/j.carbpol.2011.07.031
    [28]
    万真真, 高文宏, 曾新安. 超声波协同过氧化氢氧化法制备低分子质量大豆多糖[J]. 食品与发酵工业,2012,38(10):81−85. [WAN Z Z, GAO W H, ZENG X A. Preparation of low molecular weight hydrogen peroxide with soluble soybean polysaccharide by ultrasonic treatment[J]. Food and Fermentation Industries,2012,38(10):81−85.
    [29]
    ASHA K, BADAMALI S K. Highly efficient photocatalytic degradation of lignin by hydrogen peroxide under visible light[J]. Molecular Catalysis,2020,497:111236. doi: 10.1016/j.mcat.2020.111236
    [30]
    支梓鉴. 超声-芬顿联用技术制备低分子量酸性寡糖[D]. 杭州: 浙江大学, 2017.

    ZHI Z J. Preparation of low molecular weight acidic oligosaccharides by ultrasound-Fenton treatment[D]. Hangzhou: Zhejiang University, 2017.
    [31]
    WANG J, JIN W H, HOU Y, et al. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae[J]. International Journal of Biological Macromolecules,2013,57:26−29. doi: 10.1016/j.ijbiomac.2013.03.001
    [32]
    LEKUTTIGE P S F, KIL-NAM K, DAEKYUNG K, et al. Algal polysaccharides: Potential bioactive substances for cosmeceutical applications[J]. Critical Reviews in Biotechnology,2019,39(1):99−113. doi: 10.1080/07388551.2018.1503995
    [33]
    PARK E J, CHOI J I. Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida[J]. Journal of Applied Phycology,2017,29:2213−2217. doi: 10.1007/s10811-016-1048-4
    [34]
    ZHI Z J, CHEN J L, LI S, et al. Fast preparation of RG-I enriched ultra-low molecular weight pectin by an ultrasound accelerated Fenton process[J]. Scientific Reports,2017,7(1):47−73. doi: 10.1038/s41598-017-00070-6
    [35]
    WEN Y X, GAO L Y, ZHOU H S, et al. Opportunities and challenges of algal fucoidan for diabetes management[J]. Trends in Food Science & Technology,2021,111:628−641.
    [36]
    DAI Y L, JIANG Y F, LU Y A, et al. Fucoidan from acid-processed Hizikia fusiforme attenuates oxidative damage and regulate apoptosis[J]. International Journal of Biological Macromolecules,2020,160:390−397. doi: 10.1016/j.ijbiomac.2020.05.143
  • Cited by

    Periodical cited type(1)

    1. 张楚佳,贾健辉,高嫚,王泽冉,刘颖,窦博鑫,张娜. 3种物理方法制备抗性粳米淀粉的结构与物化特性. 中国食品学报. 2025(01): 193-207 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (258) PDF downloads (25) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return