Citation: | FENG Yuchao, YANG Hongzhi, AN Yu, et al. Analysis on the Difference of Daohuaxiang Rice Metabolites in Different Producing Areas[J]. Science and Technology of Food Industry, 2022, 43(1): 10−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050103. |
[1] |
WANG N N, FENG X, SUNG Y P, et al. Gas chromatography combined with stoichiometry to distinguish rice storage time and origin[J]. Analysis and Testing Journal,2013,32:1227−1231.
|
[2] |
LIU C J, XIE Y H, LI J, et al. The eating quality of rice has different regions and the comparative study of chemical composition[J]. J Food Sci,2013,34:165−169.
|
[3] |
CHEN T, ZHAO Y, ZHANG W, et al. Variation of the light stable isotopes in the superior and inferior grains of rice(Oryza sativa L.) with different geographical origins[J]. Food Chemistry,2016,209:95−98. doi: 10.1016/j.foodchem.2016.04.029
|
[4] |
CHUNG I M, KIM J K, LEE K J, et al. Geographic authentication of Asian rice (Oryza sativa L.) using multi-elemental and stable isotopic data combined with multivariate analysis[J]. Food Chemistry,2018,240:840−849. doi: 10.1016/j.foodchem.2017.08.023
|
[5] |
PASQUINI, CELIO. Near infrared spectroscopy: A mature analytical technique with new perspectives-a review[J]. Analytica Chimica Acta,2018,1026:8−36. doi: 10.1016/j.aca.2018.04.004
|
[6] |
ARIYAMA K, SHINOZAKI M, KAWASAKI A. Determination of the geographic origin of rice by chemometrics with strontium and lead isotope ratios and multielement concentrations[J]. Journal of Agricultural & Food Chemistry,2012,60(7):1628−1634.
|
[7] |
KUKUSAMUDE C, KONGSRI S. Elemental and isotopic profiling of Thai jasmine rice(Khao Dawk Mali 105) for discrimination of geographical origins in Thung Kula Rong Hai area, Thailand[J]. Food Control,2018,91:357−364. doi: 10.1016/j.foodcont.2018.04.018
|
[8] |
李红, 田福林, 刘成雁, 等. 气相色谱-串联质谱法测定不同产地大米中的角鲨烯[J]. 分析测试学报,2011,30(10):1179−1182. [LI H, TIAN F L, LIU C Y, et al. Determination of squalene in rices from different areas by gas chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis,2011,30(10):1179−1182. doi: 10.3969/j.issn.1004-4957.2011.10.020
|
[9] |
PANKIN D, KOLESNIKOV I, VASILEVA A, et al. Raman fingerprints for unambiguous identification of organotin compounds[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2018,204:158.
|
[10] |
ZHU L, SUN J, WU G, et al. Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy[J]. Journal of Cereal Science,2018,82:175−182. doi: 10.1016/j.jcs.2018.06.010
|
[11] |
BRYANT R J, MCCLUNG A M. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS[J]. Food Chemistry,2010,124(2):501−513.
|
[12] |
KYU D, PHUOC N, WON S. Non-destructive profiling of volatile organic compounds using HS-SPME/GC-MS and its application for the geographical discrimination of white rice[J]. Journal of Food & Drug Analysis,2018,26(1):260.
|
[13] |
CALINGACION M N, BOUALAPHANH C, DAYGON V D, et al. A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties[J]. Metabolomics,2012,8(5):771−783. doi: 10.1007/s11306-011-0374-4
|
[14] |
CHEN W, GONG L, GUO Z, et al. A novel integrated method for large-scale detection, identification, and quantification of widely-targeted metabolites: Application in the study of rice metabolomics[J]. Molecular plant,2013,6(6):1769−1780. doi: 10.1093/mp/sst080
|
[15] |
JUNG ES, LEE S, LIM SH, et al. Metabolite profiling of the short-term responses of rice leaves(Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities[J]. Plant Science,2013,210:61−69. doi: 10.1016/j.plantsci.2013.05.004
|
[16] |
FENG Y C, FU T X, ZHANG L Y, et al. Research on differential metabolites in distinction of rice(Oryza sativa L.) origin based on GC-MS[J]. Journal of Chemistry,2019,7:1−7.
|
[17] |
王玲. 转基因水稻的代谢组学研究[D]. 北京: 北京化工大学, 2013.
WANG L. Metabonomics research of genetically modifed rice[D]. Beijing: Beijing University of Chemical Technology, 2013.
|
[18] |
程建华, 桑志红, 李海静, 等. 基于GC-TOF/MS技术的转Bt基因大米代谢组学研究[J]. 分析测试学报,2016,35(10):1217−1224. [CHENG J H, SANG Z H, LI H J, et al. Metabolomics analysis of Bt-transgenic and parental rice based on gas chormatography-mass spectrometry[J]. Journal of Istrumental Analysis,2016,35(10):1217−1224. doi: 10.3969/j.issn.1004-4957.2016.10.001
|
[19] |
ZHOU J, WANG S Y, CHANG Y W, et al. Development of a gas chromatography-mass spectrometry method for the metabolomic study of rice(Oryza sativa L.) grain[J]. Chinese Journal of Chromatography,2012,30(10):1037−1042.
|
[20] |
KANEHISA M. KEGG for representation and analysis of molecular networks involving diseases and drugs[J]. Nucleic Acids Research,2010,38(1):355−360.
|
[21] |
CHENG J, SUN Y Y, SHI Y H, et al. Branched-chain amino acids regulate plant growth by affecting the homeostasis of mineral elements in rice[J]. Science China Life Sciences,2019,62:1107−1110. doi: 10.1007/s11427-019-9552-8
|
[22] |
LI Y L, LI D D, GUO Z L, et al. Os ACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice[J]. BMC Plant Biology,2016,16(1):256. doi: 10.1186/s12870-016-0943-9
|
[23] |
YANG X J, LIANG W Q, CHEN M J, et al. Rice fatty acyl- CoA synthetase Os ACOS12 is required for tapetum programmed cell death and male fertility[J]. Planta,2017,246(1):1−18. doi: 10.1007/s00425-017-2706-8
|
[24] |
ZHANG D S, LIANG W Q, YUAN Z, et al. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development[J]. Molecular Plant,2008,1(4):599−610. doi: 10.1093/mp/ssn028
|
[25] |
KIM N H, KWAK J, JI Y B, et al. Changes in lipid substances in rice during grain development[J]. Phytochemistry,2015,116:170−179. doi: 10.1016/j.phytochem.2015.05.004
|
[26] |
TUFVESSON F, WAHLGREN M, ELIASSON A C. Formation of amylose-lipid complexes and effects of temperature treatment: Part 2: Fatty acids[J]. Starch Starke,2003,55(3/4):138−149.
|
[27] |
刘海, 赵欢, 何佳芳, 等. 稻米营养品质影响因素研究进展[J]. 贵州农业科学,2013,41(6):85−89. [LIU H, ZHAO H, HE J F, et al. Advances in the influencing factors of rice nutritional quality[J]. Guizhou Agricultural Sciences,2013,41(6):85−89. doi: 10.3969/j.issn.1001-3601.2013.06.025
|
[28] |
王海涛. 影响稻谷脂肪酸值测定的因素分析[J]. 现代食品,2017(13):74. [WANG H T. Analysis of the factors affecting the determination of fatty acids in rice[J]. Modern Food,2017(13):74.
|
[29] |
钟一平. 稻谷脂肪酸值测定的影响因素分析[J]. 粮食科技与经济,2017,42(4):52−53. [ZHONG Y P. Analysis of factors the determination of fatty acid in rice[J]. Grain Science and Technology and Economy,2017,42(4):52−53.
|
[30] |
许光利. 稻米脂类对品质的影响及脂类代谢对高温弱光的响应[D]. 雅安: 四川农业大学, 2017.
XU G L. Studies on effect of lipid on rice quality and lipid metabolism in response to high temperature and weak light stresses[D]. Yaan: Sichuan Agricultural University, 2017.
|