YUE Huimin, LI Haixin, LUO Ruiping, et al. Study on the Enrichment Methods and Application of LAMP Technology for Detection of Listeria monocytogenes in Frozen Meat Products[J]. Science and Technology of Food Industry, 2021, 42(24): 128−135. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050043.
Citation: YUE Huimin, LI Haixin, LUO Ruiping, et al. Study on the Enrichment Methods and Application of LAMP Technology for Detection of Listeria monocytogenes in Frozen Meat Products[J]. Science and Technology of Food Industry, 2021, 42(24): 128−135. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050043.

Study on the Enrichment Methods and Application of LAMP Technology for Detection of Listeria monocytogenes in Frozen Meat Products

More Information
  • Received Date: May 09, 2021
  • Available Online: October 20, 2021
  • In this study efficiency of four enrichment media (Fraser, Half Fraser, LB1, LB2) were evaluated for Listeria monocytogenes in frozen meat products, and their effects on the detection limit of Listeria monocytogenes by LAMP were assessed in frozen meat products. Combined with LAMP technology, the optimized method was applied to the detection of artificial contamination samples and samples from production line. The results showed that Half Fraser represented the best enrichment among the four media, which could increase the number of live Listeria monocytogenes from 6.4×101 CFU/mL to 9.4×104 CFU/mL within 6 h. The detection limit of Listeria monocytogenes in frozen meat products reduced from 6.4×104 CFU/g (without enrichment) to 6.4×101 CFU/g by LAMP with Half Fraser-enrichment. The reliability of the method was verified by using artificial contamination samples and actual samples from production line of the plant. The results obtained from Half Fraser-LAMP were consistent with the results from national standard method with an accuracy of 100%. The whole procedure of sample processing and testing was within 8 h, which could meet the on-site testing requirements of enterprises.
  • [1]
    Q/SHAD 0001S-2017, 肉糜制品 艾狄士食品(上海)有限公司企业标准[Q]. 艾狄士食品(上海)有限公司, 2017.

    Q/SHAD 0001S-2017, Enterprise standard of addis food (Shanghai) Co., Ltd.: Meat products[Q]. Addis Food (Shanghai) Co., Ltd., 2017.
    [2]
    SB/T 10379-2012, 速冻调制食品 中华人民共和国国内贸易行业标准[S]. 中华人民共和国商务部, 2013.

    SB/T 10379-2012, Domestic trade industry standard of the People's Republic of China: Quick-frozen prepared food[S]. Ministry of Commerce, PRC, 2013.
    [3]
    Q/FJGX 0002S-2019, 速冻肉糜类制品 福建冠先食品有限公司企业标准[Q]. 福建冠先食品有限公司, 2019.

    Q/FJGX 0002S-2019, Enterprise standard of Fujian Guanxian Food Co., Ltd.: Quick-frozen meat products[Q]. Fujian Guanxian Food Co., Ltd., 2019.
    [4]
    北京智研科信咨询有限公司. 2020-2026年中国火锅料制品市场分析与产业竞争格局报告[EB/OL]. [2020-08]. http://www.abaogao.com/b/qitashipin/114382VMUM.html.

    Beijing Zhiyan Kexin Consulting Co., Ltd.. Market analysis and industry competition pattern report of China hotpot material products in 2020-2026 [EB/OL]. [2020-08]. http://www.abaogao.com/b/qitashipin/114382VMUM.html.
    [5]
    LUND M N, HEINONEN M, BARON C P, et al. Protein oxidation in muscle foods: A review[J]. Molecular Nutrition & Food Research,2011,55(1):83−95.
    [6]
    孙艳波, 张灵洁. 速冻过程中的危险因子评估[J]. 食品安全导刊,2020(24):84−85. [SUN Y B, ZHANG L J. Evaluation of risk factors in quick-freezing process[J]. Food Safety Guide,2020(24):84−85.
    [7]
    李成忠. 速冻食品的安全与质量控制探讨[J]. 现代食品,2020(11):52−54. [LI C Z. Discussion on the safety and quality control of quick-frozen food[J]. Modern Food,2020(11):52−54.
    [8]
    崔京辉, 李达, 王永全, 等. 2004~2005年北京市食品中单核细胞增生性李斯特菌的污染状况调查[J]. 中国卫生检验杂志, 2006, 16(12): 1508−1509.

    CUI J H, LI D, WANG Y Q, et al. Investigation on contamination of Listeria monocytogenes in food in Beijing from 2004 to 2005[J]. Chinese Journal of Health Laboratory Technology, 2006, 16(12): 1508−1509.
    [9]
    靳晓燕, 韩军, 于宏伟, 等. 食品中单核增生性李斯特菌(Listeria monocytogenes)污染状况研究[J]. 中国食品学报,2009,9(1):226−231. [JIN X Y, HAN J, YU H W, et al. The survey on the contamination situation of Listeria monocytogenes in foods[J]. Journal of Chinese Institute of Food Science and Technology,2009,9(1):226−231. doi: 10.3969/j.issn.1009-7848.2009.01.038
    [10]
    DUSSAULT D, VU K D, LACROIX M. Development of a model describing the inhibitory effect of selected preservatives on the growth ofListeria monocytogenes in a meat model system[J]. Food Microbiology,2016,53(PtB):115−121.
    [11]
    YIN Y L, TAN W J, WANG G L, et al. Geographical and longitudinal analysis of Listeria monocytogenes genetic diversity reveals its correlation with virulence and unique evolution[J]. Microbiological Research,2015,175:84−92. doi: 10.1016/j.micres.2015.04.002
    [12]
    BAKKER H D, FORTES E D, WIEDMANN M. Multilocus sequence typing of outbreak associated Listeria monocytogenes isolates to identify epidemic clones[J]. Foodborne Pathog Dis,2010:7257−7265.
    [13]
    DESAI A N, ANYOHA A, MADOFF L C, et al. Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of promed reports from 1996~2018[J]. International Journal of Infectious Diseases:IJID:Official Publication of the International Society for Infectious Diseases,2019,6(25):48−53.
    [14]
    NICHOLS M, CONRAD A, WHITLOCK L, et al. Short communication: Multistate outbreak of Listeria monocytogenes infections retrospectively linked to unpasteurized milk using whole-genome sequencing[J]. Journal of Dairy Science,2020,103(1):176−178. doi: 10.3168/jds.2019-16703
    [15]
    OLANYA O M, HOSHIDE A K, LJABADENIYI O A, et al. Cost estimation of listeriosis(Listeria monocytogenes) occurrence in South Africa in 2017 and its food safety implications[J]. Food Control,2019,102:231−239. doi: 10.1016/j.foodcont.2019.02.007
    [16]
    GB 4789.30-2016. 食品微生物学检验 单核细胞增生李斯特氏菌检验 中华人民共和国国家标准[S]. 中华人民共和国卫生部, 2016.

    GB 4789.30-2016. The national standard for detection of Listeria monocytogenes in food microbiology[S]. Ministry of Health, PRC, 2016.
    [17]
    NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research,2000,28(12):e63. doi: 10.1093/nar/28.12.e63
    [18]
    THAI H T, LE M Q, VOUNG C D, et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus[J]. Journal of Clinical Microbiology,2004,42(5):1956−1961. doi: 10.1128/JCM.42.5.1956-1961.2004
    [19]
    SHANG Y T, YE Q H, CAI S Z, et al. Loop-mediated isothermal amplification(LAMP) for rapid detection of Salmonella in foods based on new molecular targets[J]. LWT-Food Science and Technology,2021,142(11):110999.
    [20]
    WACHIRALURPAN S, SRIYAPAI T, AREEKIT S, et al. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex[J]. Frontiers in Chemistry,2018:6.
    [21]
    LEDLOD S, BUNRODDITH K, AREEKIT S, et al. Development of a duplex lateral flow dipstick test for the detection and differentiation of Listeria spp. and Listeria monocytogenes in meat products based on loop-mediated isothermal amplification[J]. Journal of Chromatography B-analytical Thchnologies in the Biomedical and Life Sciences,2020:1139.
    [22]
    CHEN J Q, REGAN P, LAKSANALAMAI P, et al. Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources[J]. Food Science and Human Wellness, 2017.
    [23]
    SHAO Y C, ZHU S M, JIN C C, et al. Development of multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) to detect Salmonella spp. and Shigella spp. in milk[J]. International Journal of Food Microbiology,2011,148(2):75−79. doi: 10.1016/j.ijfoodmicro.2011.05.004
    [24]
    JAROENRAM W, CECERE P, POMPA P P. Xylenol orange-based loop-mediated DNA isothermal amplification for sensitive naked-eye detection of Escherichia coli[J]. Journal of Microbiological Methods,2019,156:9−14. doi: 10.1016/j.mimet.2018.11.020
    [25]
    WANG L, SHI L, ALAM M J, et al. Special and rapid detection of foodborne Salmonella by loop-mediated isothermal amplification method[J]. Food Research International,2008,41(1):69−74. doi: 10.1016/j.foodres.2007.09.005
    [26]
    ROUMANI F, AZINHRIRO S, CARVALHO J, et al. Loop-mediated isothermal amplification combined with immunomagnetic separation and propidium monoazide for the specific detection of viable Listeria monocytogenes in milk products, with an internal amplification control[J]. Food Control, 2021.
    [27]
    YANG Q, XU H, ZHANG Y Z, et al. Single primer isothermal amplification coupled with SYBR Green II: Real-time and rapid visual method for detection of Listeria monocytogenes in raw chicken - ScienceDirect[J]. LWT,2020,128:53−56.
    [28]
    EN ISO 11290-1. Microbiology of the food chain-horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. -Part 1: Detection method[S]. Geneva: International Organization for Standardization, 2017.
    [29]
    TANG M J, ZHOU S, ZHANG X Y, et al. Rapid and sensitive detection of Listeria monocytogenes by loop-mediated isothermal amplification[J]. Curr Microbiol,2011,63:511−516. doi: 10.1007/s00284-011-0013-3
    [30]
    田长冬. 环介导等温扩增(LAMP)技术检测贝类中副溶血弧菌的研究[D]. 保定: 河北农业大学, 2011.

    TIAN C D. Detection of Vibrio parahaemolyticus in shellfish by loop-mediated isothermal amplification(LAMP)[D]. Baoding: Agricultural University of Hebei, 2011.
    [31]
    李志成, 梁栩煜, 潘振辉, 等. 速冻食品行业研究现状及发展趋势[J]. 现代食品,2020(3):15−18,21. [LI Z C, LIANG X Y, PAN Z H, et al. Research status and development trend of quick-frozen food industry[J]. Modern Food,2020(3):15−18,21.
    [32]
    李可维, 刘思洁, 赵薇, 等. 9274份肉及肉制品食源性致病菌监测结果分析[J]. 食品安全质量检测学报,2020,11(23):9033−9038. [LI K W, LIU S J, ZHAO W, et al. Analysis of surveillance results of 9274 meat and meat products foodborne pathogens[J]. Journal of Food Safety and Quality,2020,11(23):9033−9038.
  • Related Articles

    [1]GAO Ziqi, LIU Xiuwei, LI Zelin, FAN Fangyu, WANG Hanmo, TIAN Hao, NIU Zhirui. Dynamic Visual Analysis Literature in Coffee Flavor Research[J]. Science and Technology of Food Industry, 2024, 45(22): 225-235. DOI: 10.13386/j.issn1002-0306.2023110286
    [2]LI Tingyang, HOU Yue, GOU Wenfeng, SHANG Haihua, XU Feifei, LI Yiliang, HOU Wenbin, ZHOU Fujun. Visual Analysis of Amino Acid Radiation Protection Research Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(18): 366-375. DOI: 10.13386/j.issn1002-0306.2023090282
    [3]ZHANG Xuwen, LIU Sui, ZHAO Jinqi, YANG Ya, GE Binggang, WANG Kunbo, FU Donghe. Visual Analysis of Dark Tea Research Status Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(8): 397-406. DOI: 10.13386/j.issn1002-0306.2023050356
    [4]LI Jianing, ZHANG Yulin, LÜ Yi, WANG Jiaqi, MA Tingting, FANG Yulin, SUN Xiangyu. Research Progress Analysis on Copper in Wine Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(16): 470-479. DOI: 10.13386/j.issn1002-0306.2022120101
    [5]DING Yan, SUN Yuanming, LI Dongsheng, LI Tongxi, ZHANG Yongcheng, LIU Yang, LAN Haipeng. Visualized Analysis of Research Progress and Trends in Fruit Nondestructive Testing Based on CiteSpace[J]. Science and Technology of Food Industry, 2023, 44(16): 444-453. DOI: 10.13386/j.issn1002-0306.2022100233
    [6]ZHAO Qiaozhen, ZHANG Mengmeng, MIAO Kunchen, LI Xiaojie, REN Guanghua, LÜ Xiaofeng, XU Xinyu, MENG Wu. Research Status and Visualization Analysis of Microorganism in Baijiu Brewing Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(15): 492-500. DOI: 10.13386/j.issn1002-0306.2022120042
    [7]MENG Jin-ming, FAN Ai-ping, HE Chuan-qi, ZENG Li-ping. Dynamic Changes of Physicochemical and Aroma Components in the Fermentation Process of Mango-carrot Compound Fruit Wine[J]. Science and Technology of Food Industry, 2020, 41(12): 7-13. DOI: 10.13386/j.issn1002-0306.2020.12.002
    [8]SONG Meng-di, ZENG Jie, JIA Tian, ZHANG Rui-yao, MENG Ke-xin, JIANG Ji-kai, GAO Hai-yan, SU Tong-chao, SUN Jun-liang, LI Guang-lei. Processing Technology and Antioxidant Activities of Deep-fried Instant Carrot Noodles[J]. Science and Technology of Food Industry, 2019, 40(10): 227-231,237. DOI: 10.13386/j.issn1002-0306.2019.10.037
    [9]LIU Ying, JIAO Meng-yue, WANG Li-xia, GAO Han, TIAN Yi-ling. Optimization of lactic acid bacteria fermentation carrot protoplasmic technology using the response surface method and the analysis of main volatile components[J]. Science and Technology of Food Industry, 2017, (15): 85-92. DOI: 10.13386/j.issn1002-0306.2017.15.017
    [10]SUN Ya-xin, KANG Xu-lei, LIANG Dong, CHEN Fang, HU Xiao-song. Study on effect and mechanism of high pressure processing on hardness of fresh-cut carrot[J]. Science and Technology of Food Industry, 2017, (11): 200-204. DOI: 10.13386/j.issn1002-0306.2017.11.029
  • Cited by

    Periodical cited type(10)

    1. 夏羽菡,丁欢,孟甘露,赵荣,刘文颖,杜颖鑫. 小麦肽对小鼠成肌细胞C2C12凋亡的影响及机制研究. 中国食物与营养. 2024(10): 54-61 .
    2. 李尽哲,张弛,盛思佳,柳凤凤,祝浩杰,黄雅琴. 花脸香蘑山药菌质饮料的配方优化及其抗氧化活性. 食品工业科技. 2023(05): 195-203 . 本站查看
    3. 杨亚萍,吕亚辉,刘飞祥,彭新. 灵芝菌丝体硒多糖结构表征、抗氧化活性及对小鼠运动疲劳的影响. 中国食品添加剂. 2023(06): 109-118 .
    4. 符家庆,毛志晨. 蒲菜总黄酮的分离纯化及其对小鼠运动耐力的影响. 中国食品添加剂. 2023(06): 138-145 .
    5. 侯志远,孟飞燕. 响应面法优化白灵菇菌丝体多糖运动饮料配方及其抗疲劳研究. 中国食品添加剂. 2023(07): 174-180 .
    6. 张瑞,刘敬科,常世敏,刘俊利. 谷物饮料的研究进展. 食品科技. 2023(08): 152-158 .
    7. 吕一鸣,田潇凌,王晓曦,马森. 小麦蛋白质研究与开发现状. 粮食加工. 2022(03): 8-13 .
    8. 赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 . 本站查看
    9. 樊一婷. 缓解恢复运动性疲劳的天然物质化学提取工艺及性能分析. 粘接. 2022(10): 118-121 .
    10. 董佳萍,杨琪,谢琳琳,王鹤霖,刘殊凡,迟晓星. 金雀异黄素缓解免疫抑制大鼠运动性疲劳的作用研究. 中国粮油学报. 2022(09): 111-116 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (204) PDF downloads (26) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return