CHEN Jingjing, BAI Xueyuan, BIAN Shuai, et al. Screening and Evaluation of Anti-aging Activity of Ginsenosides Based on Saccharomyces cerevisiae System[J]. Science and Technology of Food Industry, 2022, 43(1): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050033.
Citation: CHEN Jingjing, BAI Xueyuan, BIAN Shuai, et al. Screening and Evaluation of Anti-aging Activity of Ginsenosides Based on Saccharomyces cerevisiae System[J]. Science and Technology of Food Industry, 2022, 43(1): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050033.

Screening and Evaluation of Anti-aging Activity of Ginsenosides Based on Saccharomyces cerevisiae System

More Information
  • Received Date: May 07, 2021
  • Available Online: November 18, 2021
  • Saccharomyces cerevisiae was used as a model organism to screen the anti-aging activity of ginsenosides and explore its activities. The optimal concentration of ginsenoside was screened out based on the growth curve of the model strain Saccharomyces cerevisiae BY4742. On this basis, the anti-aging effects of eight ginsenoside monomers Rb1, Rb2, Rg1, Rg2, Rg3, Rh1, Rh2 and Rd were screened out based on the growth curve of yeast and the activity of superoxide dismutase SOD to find out the monomer saponin with the best effect. The anti-aging effect of ginsenoside was initially explored through the detection of antioxidant indicators and cell morphological changes. At the same time, the protein of S. cerevisiae was extracted for proteomic analysis to identify the proteins with significant differences, and the functional pathways, attributes and metabolic pathways of the differential proteins were analyzed and studied in combination with the biological analysis related to GO enrichment analysis. The results showed that the optimal concentration of ginsenoside was 180 µg/mL. Among the eight monomer saponins commonly used, ginsenoside Rg1 had significant anti-aging effect and could delay the yeast entering the decline phase. Ginsenoside Rg1 could improve the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in yeast cells to varying degrees, and reduce the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Proteomic analysis showed that ginsenoside could delay the senescence of S. cerevisiae by involving 14 significantly different proteins and was closely related to cell metabolism.
  • [1]
    周佳, 康亚妮. 单细胞衰老研究的模式生物——酿酒酵母[J]. 生命科学,2013,25(5):504−510. [ZHOU J, KANG Y N. Saccharomyces cerevisiae: A model organism for single cell aging research[J]. Life Sciences,2013,25(5):504−510.
    [2]
    周玉枝, 闫明亮, 高丽, 等. 衰老动物模型的研究及其在抗衰老药物活性筛选中的应用[J]. 中草药,2017,48(6):1061−1071. [ZHOU Y Z, YAN M L, GAO L, et al. Study on aging animal model and its application in the screening of anti-aging drug activity[J]. Chinese Traditional and Herbal Medicine,2017,48(6):1061−1071.
    [3]
    SHI G, LIU D, ZHOU B, et al. Ginsenoside Rb1 alleviates oxidative low-density lipoprotein-induced vascular endothelium senescence via the SIRT1/Beclin-1/Autophagy axis[J]. Cardiovasc Pharmacol,2020,75(2):155−167. doi: 10.1097/FJC.0000000000000775
    [4]
    KAEBERLEIN M, POWERS R W, STEFFEN K K, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients[J]. Science,2005,310(5751):1193−1196. doi: 10.1126/science.1115535
    [5]
    BONAWITZ N D, CHATENAY-LAPOINTE M, PAN Y, et al. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression[J]. Cell Metab,2007,5(4):265−277. doi: 10.1016/j.cmet.2007.02.009
    [6]
    HE CHONG, ZHOU CHUANKAI, KENNEDY BRIAN K. The yeast replicative aging model[J]. Biochimica Et Biophysica Acta,2018,1864(9):2690−2696. doi: 10.1016/j.bbadis.2018.02.023
    [7]
    莫睿, 魏智民, 杨云生. 抗衰老机制研究进展[J]. 解放军医学杂志,2017,42(8):743−748. [MO R, WEI Z M, YANG Y S. Research progress on anti-aging mechanism[J]. Chinese PLA Medical Journal,2017,42(8):743−748.
    [8]
    HARMAN D. The aging process[J]. Proceedings of the National Academy of Sciences of the United States of America,1981,78(11):7124−7128. doi: 10.1073/pnas.78.11.7124
    [9]
    尹亚辉, 安文涛, 董亮, 等. 不同世代酿酒酵母胞内抗氧化酶活性变化[J]. 食品科技,2013,38(8):38−41,47. [YIN Y H, AN W T, DONG L, et al. Changes of intracellular antioxidant enzyme activities of Saccharomyces cerevisiae in different generations[J]. Food Science and Technology,2013,38(8):38−41,47.
    [10]
    王郅媛, 王友升, 李丽萍. 抗衰老研究新模型—酵母细胞活性氧代谢研究进展[J]. 食品科学,2012,33(7):354−358. [WANG Z Y, WANG Y S, LI L P. A new model for anti-aging research-research progress of active oxygen metabolism in yeast cells[J]. Food Science,2012,33(7):354−358.
    [11]
    张爱利. 酿酒酵母衰老机制研究进展[J]. 生命科学,2009,21(2):303−306. [ZHANG A L. Researchprogress on senescence mechanism of Saccharomyces cerevisiae[J]. Life Science,2009,21(2):303−306.
    [12]
    钟云. Candidatus liberibacter asiaticus诱导的柑橘转录组学及蛋白组学研究[D]. 长沙: 湖南农业大学, 2012.

    ZHANG Y. Transcriptomic and proteomic studies of Candidatus liberibacter asiaticus in citrus[D]. Changsha: Hunan Agricultural University, 2012.
    [13]
    于雪妮, 冯小刚, 张建民, 等. 人参化学成分与药理作用研究新进展[J]. 人参研究,2019,31(1):47−51. [YU X N, FENG X G, ZHANG J M, et al. New progress in research on chemical constituents and pharmacological effects of ginseng[J]. Ginseng Research,2019,31(1):47−51. doi: 10.3969/j.issn.1671-1521.2019.01.012
    [14]
    向玥, 陈粼波, 姚辉, 等. 人参皂苷Rg1对D-半乳糖所致衰老小鼠海马的保护机制[J]. 中草药,2017,48(18):3789−3795. [XIANG Y, CHEN L B, YAO H, et al. Protective mechanism of Ginsenoside Rg1 on hippocampus of aging mice induced by D-galactose[J]. Chinese Herbal Medicine,2017,48(18):3789−3795. doi: 10.7501/j.issn.0253-2670.2017.18.019
    [15]
    TANG Y L, ZHOU Y, WANG Y P, et al. Ginsenoside Rg1 protects against Sca-1+ HSC/HPC cell aging by regulating the SIRT1-FOXO3 and SIRT3-SOD2 signaling pathways in a γ-ray irradiation-induced aging mice model[J]. Experimental and Therapeutic Medicine,2020,20(2):1245−1252. doi: 10.3892/etm.2020.8810
    [16]
    WANG Z L, CHEN L B, QIU Z, et al. Ginsenoside Rg1 ameliorates testicular senescence changes in D-gal-induced aging mice via anti-inflammatory and antioxidative mechanisms[J]. Mol Med Rep,2018,17(5):6269−6276.
    [17]
    乔巨慧, 赵大庆, 刘美辰, 等. 人参总皂苷对D-半乳糖致PC12细胞衰老的改善作用及其机制研究[J]. 中国药房,2020,31(24):2993−2999. [QIAO J H, ZHAO D Q, LIU M C, et al. Effect of ginseng total saponins on the aging of PC12 cells induced by D-galactose[J]. Pharmacy of China,2020,31(24):2993−2999. doi: 10.6039/j.issn.1001-0408.2020.24.08
    [18]
    李成鹏, 张梦思, 刘俊, 等. 人参皂苷Rg1延缓脑衰老机制研究[J]. 中国中药杂志,2014,39(22):4442−4447. [LI C P, ZHANG M S, LIU J, et al. Mechanism of ginsenoside Rg1 in delaying brain aging[J]. Chinese Journal of Traditional Chinese Medicine,2014,39(22):4442−4447.
    [19]
    彭彬, 王朝丽, 冯丽, 等. 人参皂苷Rg1调控神经干细胞衰老作用及机制探讨[J]. 中国细胞生物学学报,2011,33(10):1116−1122. [PENG B, WANG C L, FENG L, et al. Effects of ginsenoside Rg1 on neural stem cell senescence[J]. Chinese Journal of Cell Biology,2011,33(10):1116−1122.
    [20]
    柯世业, 石光耀, 刘定辉, 等. 人参皂苷Rb1通过Sirt3/SOD2通路延缓高糖诱导的人脐静脉内皮细胞衰老[J]. 中山大学学报(医学版),2019,40(3):329−336. [KE S Y, SHI G Y, LIU D H, et al. Ginsenoside Rb1 prevents senescence of human umbilical vein endothelial cells induced by high glucose through Sirt3/SOD2 pathway[J]. Journal of Sun Yat-sen University(Medical Edition),2019,40(3):329−336.
    [21]
    刘春红, 汤燚聪, 高瑜培, 等. 鹿茸乙醇提取物对秀丽隐杆线虫抗衰老的作用[J/OL]. 食品工业科技: 1−8 [2021-04-20]. https: //doi. org/10.13386/j. issn1002-0306.2020060027.

    LIU C H, TANG Y C, GAO Y P, et al. Antler antler ethanol extract on the anti-aging effect of Caedihabditis elegans[J/OL]. Science and Technology of Food Industry : 1−8 [2021-04-20]. https://doi.org/10.13386/j.issn1002-0306.2020060027.
    [22]
    时桂芹, 任菲, 谢冰宗, 等. 高糖胁迫对酿酒酵母抗氧化活性及代谢的影响[J]. 食品工业科技,2019,40(20):94−100. [SHI G Q, REN F, XIE B Z, et al. Effects of high sugar stress on antioxidant activity and metabolism of Saccharomyces cerevisiae[J]. Science and Technology of Food Industry,2019,40(20):94−100.
    [23]
    袁方, 朴永哲, 刘巨涛, 等. 外源肌醇、柚皮苷及姜黄素对酿酒酵母抗衰老性能影响[J]. 酿酒科技,2014,4(7):43−47. [YUAN F, PU Y Z, LIU J T, et al. Effects of exogenous inositol, naringin and curcumin on anti-aging performance of Saccharomyces cerevisiae[J]. Brewing Technology,2014,4(7):43−47.
    [24]
    ISWARYA A, ANJUGAM M, SHANTHINI S, et al. Protective activity of beta-1, 3-glucan binding protein against AAPH induced oxidative stress in Saccharomyces cerevisiae[J]. International Journal of Biological Macromolecules,2019,138:890−902. doi: 10.1016/j.ijbiomac.2019.07.130
    [25]
    吴奇. 人参皂苷Rg1延缓神经干细胞衰老与调控Nrf2/ARE信号通路关系的研究[D]. 重庆: 重庆医科大学, 2020.

    WU Q. Study on the relationship between ginsenoside Rg1 delaying neural stem cell senescence and regulating Nrf2/ARE signaling pathway[D]. Chongqing: Chongqing Medical University, 2020.
    [26]
    王敏, 廖林锋, 孙晓宇, 等. 延衰组合物对酵母细胞寿命及氧化应激的研究[J]. 食品研究与开发,2021,42(12):1−7. [WANG M, LIAO L F, SUN X Y, et al. Studies on the longevity and oxidative stress of yeast cells by prolonging decay composition[J]. Food Research and Development,2021,42(12):1−7. doi: 10.12161/j.issn.1005-6521.2021.12.001
    [27]
    OHKAWA H, OHISHI N, YAGI K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction[J]. Anal Biochem,1979,95(2):351−358. doi: 10.1016/0003-2697(79)90738-3
    [28]
    石润霖. 不同营养物质对酵母生长及衰老的影响[D]. 大连: 大连工业大学, 2015.

    SHI R L. Effects of different nutrients on growth and senescence of yeast[D]. Dalian: Dalian University of Technology, 2015.
    [29]
    袁方. 酵母抗老化研究[D]. 大连: 大连工业大学, 2014.

    YUAN F. Study on anti-aging of yeast[D]. Dalian: Dalian University of Technology, 2014.
    [30]
    MEDKOUR Y, MOHAMMAD K, ARLIA-CIOMMO A, et al. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast[J]. Oncotarget,2019,10(56):5780−5816. doi: 10.18632/oncotarget.27209
    [31]
    BATUBARA I, ASTUTI R I, PRASTYA M E, et al. The antiaging effect of active fractions and ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid isolated from Adenostemma lavenia(L.) O. kuntze at the cellular level[J]. Antioxidants,2020,9(8):719. doi: 10.3390/antiox9080719
    [32]
    HAMANACA R, CHANDEL N. Mitochondrial reactive oxygen species regulate cellular signalling and dictate biological outcome[J]. Trends in Biochemical Sciences,2010,35:505−513. doi: 10.1016/j.tibs.2010.04.002
    [33]
    王高坚, 王珍珍, 李嘉嘉, 等. 蓝莓酵素的体外抗氧化及对秀丽隐杆线虫的氧化应激保护作用[J/OL]. 食品工业科技: 1−13 [2021-01-19]. https://doi.org/10.13386/j.issn1002-0306.2020110157.

    WANG G J, WANG Z Z, LI J J, et al. Effects of blueberry enzyme on antioxidant activity and oxidative stress protection against Caenorhabditis elegans[J/OL]. Science and Technology in Food Industry : 1−13 [2021-01-19]. https://doi.org/10.13386/j.issn1002-0306.2020110157.
  • Cited by

    Periodical cited type(3)

    1. 李颜博,杜庆萍,杨瑞,李薇,张路思,宋安康,李玮,李学文,王伟. 沙棘原浆关键加工环节品质动态变化. 江苏农业学报. 2025(02): 362-371 .
    2. 陈亦辉,陈伟,尚海涛,王建成. 我国水蜜桃种质、保鲜贮运和加工技术研究进展. 浙江万里学院学报. 2024(02): 81-89 .
    3. 翟若涵,张全艳,陈翠榕,高云燕. 桃果实保鲜技术研究综述. 南方农业. 2024(04): 179-181 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (468) PDF downloads (56) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return