ZHAI Qinglin, WANG Ruobing, TENG Jialu, et al. Preparation of Acetylated Acid-hydrolysis Modified Starch with High Degree of Substitution and Its Nanoparticles[J]. Science and Technology of Food Industry, 2021, 42(24): 197−204. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040316.
Citation: ZHAI Qinglin, WANG Ruobing, TENG Jialu, et al. Preparation of Acetylated Acid-hydrolysis Modified Starch with High Degree of Substitution and Its Nanoparticles[J]. Science and Technology of Food Industry, 2021, 42(24): 197−204. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040316.

Preparation of Acetylated Acid-hydrolysis Modified Starch with High Degree of Substitution and Its Nanoparticles

More Information
  • Received Date: May 05, 2021
  • Available Online: October 22, 2021
  • In order to improve the application of acetylated starch in biomedicine and targeted drug delivery system, ordinary corn starch was selected as the material, acid hydrolysis in alcohol medium before the acetylation was introduced in the preparation of the acetylated acid-hydrolysis modified starch with high degree of substitution. The effects of acid-hydrolysis conditions on physicochemical properties of the modified starches were investigated by means of FT-IR, XRD, contact angle measurement, pasting curve and scanning electron microscope. Subsequently, anti-solvent precipitation was introduced in the preparation of the starch nanoparticles, and the size range was determined. Based on the results, under the condition of 70% ethanol (v/v), 12 mol/L hydrochloric acid and 65 ℃, the substitution degree of acetylated starch increased from 0.84 to 1.33, the hydrophobicity significantly (P<0.05) improved and the particle size was reduced. Starch nanoparticles with a particle size of about 200 nm could be obtained through anti-solvent precipitation.
  • [1]
    NAJAFI S M, BAGHAIE M, ASHORI A. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model[J]. International Journal of Biological Macromolecules,2016,87:48−54. doi: 10.1016/j.ijbiomac.2016.02.030
    [2]
    EL-NAGGARL M E, EL-RAFIE M H, EL-SHEIKH M A, et al. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles[J]. International Journal of Biological Macromolecules,2015,81:718−729. doi: 10.1016/j.ijbiomac.2015.09.005
    [3]
    TIAN S, CHEN Y, CHEN Z, et al. Preparation and characteristics of starch esters and its effects on dough physicochemical properties[J]. Journal of Food Quality,2018(12):1−7.
    [4]
    付大鹏. 新型载药纳米体系的构建及其促进血栓溶解作用的研究[D]. 乌鲁木齐: 新疆医科大学, 2020.

    FU D P. Construction of a novel drug loaded nano system and its effect on promoting thrombolysis[D]. Wulumuqi: Xinjiang Medical University, 2020.
    [5]
    GU F, LI B Z, XIA H, et al. Preparation of starch nanospheres through hydrophobic modification followed by initial water dialysis[J]. Carbohydrate Polymers,2015(115):605−612.
    [6]
    姬娜. 淀粉基口服胰岛素纳米复合物的制备及性能研究[D]. 无锡: 江南大学, 2019.

    JI N. Facribaction and characterization of starch-based nanocomposites for oral insulin delivery[D]. Wuxi: Jiangnan University, 2019.
    [7]
    郭春香. 淀粉基材料乙酰化修饰及其纳米微球制备与表征[D]. 长春: 长春大学, 2018.

    GUO C X. Acetylation modification of starch substrate and preparation and characterization of nanometer microspheres[D]. Changchun: Changchun University, 2018.
    [8]
    GG A, DM A, AM B, et al. Synthesis of controlled size starch nanoparticles (SNPs)-science direct[J]. Carbohydrate Polymers,2020:250.
    [9]
    ALI T M, HASNAIN A. Physicochemical, morphological, thermal, pasting, and textural properties of starch acetates[J]. Food Reviews International,2016,32(2):161−180. doi: 10.1080/87559129.2015.1057842
    [10]
    GARG S, JANA A K. Characterization and evaluation of acylated starch with different acyl groups and degrees of substitution[J]. Carbohydrate Polymers,2011,83(4):1623−1630. doi: 10.1016/j.carbpol.2010.10.015
    [11]
    HAN F, GAO C, LIU M, et al. Synthesis, optimization and characterization of acetylated corn starch with the high degree of substitution[J]. International Journal of Biological Macromolecules,2013,59:372−376. doi: 10.1016/j.ijbiomac.2013.04.080
    [12]
    张若娣. 乙酰化淀粉微球的制备研究[D]. 大连: 大连理工大学, 2014.

    ZHANG R D. Preparation of acetylated starch microspheres[D]. Dalian: Dalian University of Technology, 2014.
    [13]
    BISMARK S, ZHU Z, BENJAMIN T. Effects of differential degree of chemical modification on the properties of modified starches: Sizing[J]. Journal of Adhesion,2018,94(2):97−123. doi: 10.1080/00218464.2016.1250629
    [14]
    董晓刚. 微晶纤维素的改性及其在热塑性淀粉复合材料中的应用[D]. 长春: 吉林大学, 2012.

    DONG X G. Modification of microcrystalline cellulose and its application in thermoplastic composites[D]. Changchun: Jilin University, 2012.
    [15]
    彭雅丽. 酸解酯化复合变性大米淀粉的制备及其在淀粉膜中的应用[D]. 长沙: 湖南农业大学, 2011.

    PENG Y L. Prepa-ration of acidolysis-esterification composite modified rice starch and its application in starch film[D]. Changsha: Hunan Agricultural Unieversity, 2011.
    [16]
    邢俊杰. 酸解-湿热处理复合改性淀粉多阶段糊化特性及机理研究[D]. 北京: 中国农业大学, 2018.

    XING J J. Study on the multi-stage gelatinization behaviors of dual modified starch with acid hydrolysis and heat-moisture treatment[D]. Beijing: China Agricultural University, 2018.
    [17]
    姜毅. 碎米生产酸解醋酸酯复合变性淀粉的研究[J]. 粮食科技与经济,2012,37(5):39−41. [JIANG Y. Study on the production of acidolytic acetate compound modified starch from broken rice[J]. Food Science and Technology and Economy,2012,37(5):39−41.
    [18]
    徐忠, 王铎, 赵丹, 等. 酸解乙酰化玉米复合变性淀粉工艺研究[J]. 哈尔滨商业大学学报(自然科学版),2010,26(6):684−687, 691. [XU Z, WANG Y, ZHAO D, et al. Study on preparation and properties of acetylated acid hydrolysis modified starch[J]. Journal of Harbin University of Commerce(Natural Science Edition),2010,26(6):684−687, 691.
    [19]
    李佳佳, 高群玉. 酸预处理对蜡质玉米乙酰化淀粉性质的影响[J]. 食品工业科技,2012,33(23):97−100,105. [LI J J, GAO Q Y. Influence of prior acid treatment on acetylation of waxy maize starch[J]. Science and Technology of Food Industry,2012,33(23):97−100,105.
    [20]
    WHISTLER R L, BEMILLER J N, PASCHALL E F. Starch chemistry and technology[M]. New York: Academic Press, 1984.
    [21]
    魏本喜. 淀粉纳米晶的制备、分散、改性及乳化性研究[D]. 无锡: 江南大学, 2015.

    WEI B X. Starch nanocrystal: Preparation, dispersion, modification and its emulsifying property[D]. Wuxi: Jiangnan University, 2015.
    [22]
    何君. 马铃薯抗性淀粉在发酵乳中的应用研究[D]. 呼和浩特: 内蒙古农业大学, 2018.

    HE J. Study on application of potato resistant starches in yogurt[D]. Hohhot: Inner Mongolia Agricultural University, 2018.
    [23]
    陈梦雪, 李飞, 李光磊. 酸解甘薯淀粉及糊化粘度特性研究[J]. 农业科技与装备,2016(6):38−40. [CHEN M X, LI FEI, LI G L. Study on acidolysis sweet potato starch and its gelatinization viscosity properties[J]. Agricultural Science & Technology and Equipment,2016(6):38−40. doi: 10.3969/j.issn.1674-1161.2016.06.015
    [24]
    吴杰, 马致远, 陈培涵, 等. 低分子质量淀粉的制备及其结构研究[J]. 中国科技论文,2017,12(12):1371−4. [WU J, MA Z Y, CHEN P H, et al. Preparation and structual analysis of low molecular weight starch[J]. Chnia Sciencepaper,2017,12(12):1371−4.
    [25]
    LEI M, FEIYANG X, HAOCUN K, et al. Moderate vinyl acetate acetylation improves the pasting properties of oxidized corn starch[J]. Starch-Stärke,2020,73:2000079.
    [26]
    LIN D, ZHOU W, YANG Z, et al. Study on physicochemical properties, digestive properties and application of acetylated starch in noodles[J]. International Journal of Biological Macromolecules,2019,128:948−956. doi: 10.1016/j.ijbiomac.2019.01.176
    [27]
    唐洪波, 马冰洁. 乙酰化酸解复合变性淀粉的制备及性能研究[J]. 食品科学,2007,28(1):47−50. [TANG H B, MA B J. Study on preparation and properties of acetylated acid hydrolysis modified starch[J]. Food Science,2007,28(1):47−50.
    [28]
    WANG S, COPELAND L. Effect of acid hydrolysis on starch structure and functionality: A review[J]. C R C Critical Reviews in Food Technology,2015,55(8):1081−1097. doi: 10.1080/10408398.2012.684551
    [29]
    邓放明, 夏延斌, 莫新良等. 淀粉颗粒糊化新工艺初探[J]. 湖南农学院学报,1995(1):61−66. [DENG F M, XIA Y B, MO X L, et al. Preliminary study on new technology of starch granule gelatinization[J]. Journal of Hunan Agricultural College,1995(1):61−66.
    [30]
    卢未琴. 醇介质中不同链淀粉含量玉米淀粉微晶的制备及其性质研究[D]. 广州: 华南理工大学, 2010.

    LU W Q. Study on the properties and preparation of maize starch crystallites with different amylose content in alcohol medium[D]. Guangzhou: South China Universtity of Technology, 2010.
    [31]
    UTRILLA-COELLO R G, HERNANDEZ-JAIMES C, CARRILLO-NAVAS H, et al. Acid hydrolysis of native corn starch: Morphology, crystallinity, rheological and thermal properties[J]. Carbohydrate Polymers,2014,103:596−602. doi: 10.1016/j.carbpol.2014.01.046
    [32]
    ZHANG H, ZHOU X, HE J, et al. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch[J]. Food Chemistry,2017,220:413−419. doi: 10.1016/j.foodchem.2016.10.030
    [33]
    耿凤英. 预处理对淀粉结构及化学反应活性的影响[D]. 天津: 天津大学, 2010.

    GENG F Y. Influence of pretreatment on strcture and chemical reaction activity of starch[D]. Tianjin: Tianjin University, 2010.
    [34]
    胡琼恩. 淀粉接枝共聚物的制备及应用研究[D]. 无锡: 江南大学, 2018.

    HU Q E. Preparation and application of starch graft copolymer[D]. Wuxi: Jiangnan University, 2018.
    [35]
    RAHIM A, KADIR S, JUSMA N. The influence degree of substitution on the physicochemical properties of acetylated arenga starches[J]. International Food Research Journal,2017,24(1):102−107.
    [36]
    陈惠娟, 孙科祥, 李光磊. 酸解因素对淀粉黏度特性的影响[J]. 食品科技,2010,35(1):168−170, 174. [CHEN H J, SUN K X, LI G L. Acid-modified factors to the influence on the viscosity specific property of starch[J]. Food Science,2010,35(1):168−170, 174.
    [37]
    ZHENG H L, SHYH Y L, YUNG H C. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches[J]. Carbohydrate Polymers,2003,53(4):475−482. doi: 10.1016/S0144-8617(03)00145-0
    [38]
    王斌, 张本山, 刘培玲. 乙醇溶剂保护法制备非晶颗粒态玉米淀粉[J]. 食品与发酵工业,2007(3):75−77, 81. [WANG B, ZHANG B S, LIU P L. Preparation of non-crystal granular corn starch by ethanol’s protect[J]. Food and Fermentation Industries,2007(3):75−77, 81.
    [39]
    左迎峰, 顾继友, 张彦华, 等. 酸解温度和时间对玉米淀粉性能的影响[J]. 西南林业大学学报,2012,32(5):107−110. [ZUO Y F, GU J Y, ZHANG Y H, et al. Effect of acid hydrolysis temperature and time on properties of corn starch[J]. Journal of Southwest Forestry University(Natural Sciences),2012,32(5):107−110.
    [40]
    赵凯, 雷鸣, 刘丽艳, 等. 乙酰化羟丙基复合改性玉米淀粉物化特性研究[J]. 中国粮油学报,2019,34(10):29−35. [ZHAO K, LEI M, LIU L Y, et al. Physicochemical properties of acetylated and hydroxypropylated dual-modified corn starch[J]. Journal of the Chinese Cereals and Oils Association,2019,34(10):29−35. doi: 10.3969/j.issn.1003-0174.2019.10.006
    [41]
    李明宇. 乙酰化二淀粉磷酸酯的制备及性质研究[D]. 哈尔滨: 哈尔滨商业大学, 2013.

    LI M Y. Study on preparation and characterization of acetylated distarch phosphate[D]. Harbin: Harbin University of Commerce, 2013.
    [42]
    侯淑瑶, 代养勇, 刘传富, 等. 高压均质法制备甘薯纳米淀粉及其表征[J]. 食品工业科技,2017,38(12):233−238, 242. [HOU S Y, DAI Y Y, LIU C F, et al. Preparation and characterization of sweet potato starch nanoparticles by high pressure homogenization[J]. Science and Technology of Food Industry,2017,38(12):233−238, 242.
    [43]
    范少锋. 乙酰化直链玉米淀粉的制备及性能研究[D]. 沈阳: 沈阳工业大学, 2016.

    FAN S F. Preparation, property and characterization of acetylated amylose corn starch[D]. Shenyang: Shenyang University of Technology, 2016.
    [44]
    DENG S, GIGLIOBIANCO M R, CENSI R, et al. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities[J]. Nanomaterials,2020,10(5):847. doi: 10.3390/nano10050847
    [45]
    李令金. 空心硬胶囊用酸解羟丙基复合变性淀粉的研究[D]. 无锡: 江南大学, 2018.

    LI L J. Study on acid-hydrolyzed-hydroxypropylated starch applied to hollow hard capsules[D]. Wuxi: Jiangnan University, 2018.
    [46]
    吴娟. 基于干热酸解法淀粉纳米颗粒的制备及应用基础研究[D]. 合肥: 合肥工业大学, 2019.

    WU J. Preparation and applied basic research of starch nanoparticles based on dry-hot acid hydrolysis[D]. Hefei: Hefei University of Technology, 2019.
  • Related Articles

    [1]GAO Ziqi, LIU Xiuwei, LI Zelin, FAN Fangyu, WANG Hanmo, TIAN Hao, NIU Zhirui. Dynamic Visual Analysis Literature in Coffee Flavor Research[J]. Science and Technology of Food Industry, 2024, 45(22): 225-235. DOI: 10.13386/j.issn1002-0306.2023110286
    [2]LI Tingyang, HOU Yue, GOU Wenfeng, SHANG Haihua, XU Feifei, LI Yiliang, HOU Wenbin, ZHOU Fujun. Visual Analysis of Amino Acid Radiation Protection Research Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(18): 366-375. DOI: 10.13386/j.issn1002-0306.2023090282
    [3]ZHANG Xuwen, LIU Sui, ZHAO Jinqi, YANG Ya, GE Binggang, WANG Kunbo, FU Donghe. Visual Analysis of Dark Tea Research Status Based on CiteSpace[J]. Science and Technology of Food Industry, 2024, 45(8): 397-406. DOI: 10.13386/j.issn1002-0306.2023050356
    [4]LI Jianing, ZHANG Yulin, LÜ Yi, WANG Jiaqi, MA Tingting, FANG Yulin, SUN Xiangyu. Research Progress Analysis on Copper in Wine Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(16): 470-479. DOI: 10.13386/j.issn1002-0306.2022120101
    [5]DING Yan, SUN Yuanming, LI Dongsheng, LI Tongxi, ZHANG Yongcheng, LIU Yang, LAN Haipeng. Visualized Analysis of Research Progress and Trends in Fruit Nondestructive Testing Based on CiteSpace[J]. Science and Technology of Food Industry, 2023, 44(16): 444-453. DOI: 10.13386/j.issn1002-0306.2022100233
    [6]ZHAO Qiaozhen, ZHANG Mengmeng, MIAO Kunchen, LI Xiaojie, REN Guanghua, LÜ Xiaofeng, XU Xinyu, MENG Wu. Research Status and Visualization Analysis of Microorganism in Baijiu Brewing Based on Bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(15): 492-500. DOI: 10.13386/j.issn1002-0306.2022120042
    [7]MENG Jin-ming, FAN Ai-ping, HE Chuan-qi, ZENG Li-ping. Dynamic Changes of Physicochemical and Aroma Components in the Fermentation Process of Mango-carrot Compound Fruit Wine[J]. Science and Technology of Food Industry, 2020, 41(12): 7-13. DOI: 10.13386/j.issn1002-0306.2020.12.002
    [8]SONG Meng-di, ZENG Jie, JIA Tian, ZHANG Rui-yao, MENG Ke-xin, JIANG Ji-kai, GAO Hai-yan, SU Tong-chao, SUN Jun-liang, LI Guang-lei. Processing Technology and Antioxidant Activities of Deep-fried Instant Carrot Noodles[J]. Science and Technology of Food Industry, 2019, 40(10): 227-231,237. DOI: 10.13386/j.issn1002-0306.2019.10.037
    [9]LIU Ying, JIAO Meng-yue, WANG Li-xia, GAO Han, TIAN Yi-ling. Optimization of lactic acid bacteria fermentation carrot protoplasmic technology using the response surface method and the analysis of main volatile components[J]. Science and Technology of Food Industry, 2017, (15): 85-92. DOI: 10.13386/j.issn1002-0306.2017.15.017
    [10]SUN Ya-xin, KANG Xu-lei, LIANG Dong, CHEN Fang, HU Xiao-song. Study on effect and mechanism of high pressure processing on hardness of fresh-cut carrot[J]. Science and Technology of Food Industry, 2017, (11): 200-204. DOI: 10.13386/j.issn1002-0306.2017.11.029
  • Cited by

    Periodical cited type(10)

    1. 夏羽菡,丁欢,孟甘露,赵荣,刘文颖,杜颖鑫. 小麦肽对小鼠成肌细胞C2C12凋亡的影响及机制研究. 中国食物与营养. 2024(10): 54-61 .
    2. 李尽哲,张弛,盛思佳,柳凤凤,祝浩杰,黄雅琴. 花脸香蘑山药菌质饮料的配方优化及其抗氧化活性. 食品工业科技. 2023(05): 195-203 . 本站查看
    3. 杨亚萍,吕亚辉,刘飞祥,彭新. 灵芝菌丝体硒多糖结构表征、抗氧化活性及对小鼠运动疲劳的影响. 中国食品添加剂. 2023(06): 109-118 .
    4. 符家庆,毛志晨. 蒲菜总黄酮的分离纯化及其对小鼠运动耐力的影响. 中国食品添加剂. 2023(06): 138-145 .
    5. 侯志远,孟飞燕. 响应面法优化白灵菇菌丝体多糖运动饮料配方及其抗疲劳研究. 中国食品添加剂. 2023(07): 174-180 .
    6. 张瑞,刘敬科,常世敏,刘俊利. 谷物饮料的研究进展. 食品科技. 2023(08): 152-158 .
    7. 吕一鸣,田潇凌,王晓曦,马森. 小麦蛋白质研究与开发现状. 粮食加工. 2022(03): 8-13 .
    8. 赵云龙. 芜菁山楂复合饮料配方优化及其对运动耐力的影响. 食品工业科技. 2022(14): 401-408 . 本站查看
    9. 樊一婷. 缓解恢复运动性疲劳的天然物质化学提取工艺及性能分析. 粘接. 2022(10): 118-121 .
    10. 董佳萍,杨琪,谢琳琳,王鹤霖,刘殊凡,迟晓星. 金雀异黄素缓解免疫抑制大鼠运动性疲劳的作用研究. 中国粮油学报. 2022(09): 111-116 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (266) PDF downloads (21) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return