QU Wenjuan, FAN Wei, ZHU Yanan, et al. Nutritive Quality of Walnutdried by Variable Temperature Drum Catalytic Infrared-Hot Air[J]. Science and Technology of Food Industry, 2021, 42(24): 205−215. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040298.
Citation: QU Wenjuan, FAN Wei, ZHU Yanan, et al. Nutritive Quality of Walnutdried by Variable Temperature Drum Catalytic Infrared-Hot Air[J]. Science and Technology of Food Industry, 2021, 42(24): 205−215. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040298.

Nutritive Quality of Walnutdried by Variable Temperature Drum Catalytic Infrared-Hot Air

More Information
  • Received Date: April 28, 2021
  • Available Online: October 14, 2021
  • In order to improve the quality of dried walnut, the changes of walnut oil (acid value, iodine value, peroxide value, oleic acid, linoleic acid, linolenic acid and palmitic acid contents), proteinstructure (FTIR, CD, SEM, fluorescence, surface hydrophobicity, amino acid composition) and polyphenols (content, IC50(DPPH), IC50(ABTS) and iron ion reduction ability) were investigated after the variable temperature drum catalytic infrared-hot air drying (VTDCIR-HAD), and compared with those of single hot air drying (HAD) and constant temperature drum catalytic infrared-hot air drying (CTDCIR-HAD). The results showed that compared with HAD, the VTDCIR-HAD and CTDCIR-HAD treatments reduced the oleic acid value by 17.31% and 28.85%, respectively, and decreased the peroxide value by 4% and 20%, respectively, while the iodine value, oleic acid, linoleic acid and linolenic acid contents had no significant changes. Among the three drying methods, the quality of walnut oil treated with VTDCIR-HAD was the best. Compared with HAD, the VTDCIR-HAD and CTDCIR-HAD treated walnut protein structures were more elongated, but there was no significant difference between them. The results showed that the infrared absorption intensity increased, the α-helical contents decreased by 50% and 18.75%, respectively, the fluorescence intensity increased, and the surface hydrophobicity increased by 28.27% and 12.51%, respectively. The proportion of free hydrophobic amino acids decreased by 19.24% and 9.49%, respectively, while the proportion of hydrophilic amino acids increased by 9.84% and 4.85%, respectively, and the apparent structure of protein had no significant change. Compared with HAD, the VTDCIR-HAD and CTDCIR-HAD treatments increased polyphenols contents by 5.23% and 10.92%, respectively, while IC50(DPPH) and IC50(ABTS) decreased by 24.36%, 11.58% and 14.72%, 10.60%, respectively, and iron reduction ability was significantly improved. Among the three drying methods, VTDCIR-HAD treatment had the highest content of polyphenols in walnut. In conclusion, among the three drying methods, VTDCIR-HAD treatment was the best, which can slow down the rate of oil oxidation and rancidity, improve the protein structure, increase the content of polyphenols and antioxidant activity, and was more conducive to protect the quality of dried walnut.
  • [1]
    杨永涛, 潘思源, 靳欣欣, 等. 不同品种核桃的氨基酸营养价值评价[J]. 食品科学,2017,38(13):207−212. [YANG Y T, PAN S Y, JIN X X, et al. Amino acid composition and nutritional evaluation of different varieties of walnut[J]. Food Science,2017,38(13):207−212. doi: 10.7506/spkx1002-6630-201713034
    [2]
    李笑笑. 核桃内种皮多酚的提取及核桃油与核桃蛋白粉的稳定性研究[D]. 无锡: 江南大学, 2017.

    LI X X. Study on polyphenol extraction from walnut kernel skin and stability of walnut oil and walnut protein powder[D]. Wuxi: Jiangnan University, 2017.
    [3]
    张永成, 马佳乐, 唐玉荣, 等. 我国核桃初加工现状与分析[J]. 食品工业,2020,41(7):198−202. [ZHANG Y C, MA J L, TANG Y R, et al. Status and analysis of walnut primary processing in China[J]. Food Industry,2020,41(7):198−202.
    [4]
    常君, 任华东, 姚小华, 等. 薄壳山核桃果实发育后期油脂和矿质养分动态变化分析[J]. 林业科学研究,2019,32(6):122−129. [CHANG J, REN H D, YAO X H, et al. Analysis of dynamic changes of oil and mineral nutrients in pecan at thelate stage of fruit development[J]. Forest Research,2019,32(6):122−129.
    [5]
    豁银强, 刘传菊, 聂荣祖, 等. 核桃蛋白的组成、制备及特性研究进展[J]. 中国粮油学报,2020,35(12):191−197. [HUO Y Q, LIU C J, NIE R Z, et al. Research progress on the composition, preparation and properties of walnut protein[J]. Journal of the Chinese Cereals and Oils Association,2020,35(12):191−197. doi: 10.3969/j.issn.1003-0174.2020.12.030
    [6]
    BUTHELEZI D, MILLICENT N, TESFAY S Z, et al. Destructive and non-destructive techniques used for quality evaluation of nuts: A review[J]. Scientia Horticulturae,2019,247:138−146. doi: 10.1016/j.scienta.2018.12.008
    [7]
    CANNEDDU G, JUNIOR L C C, HENRIQUE D A T G. Quality evaluation of shelled and unshelled macadamia nuts by means of near-infrared spectroscopy (NIR)[J]. Journal of Food Science,2016,81(7):C1613−C1621. doi: 10.1111/1750-3841.13343
    [8]
    周晔. 核桃内种皮多酚分析与抗氧化活性[D]. 北京: 中国林业科学研究院, 2013.

    ZHOU Y. Analysis of walnut pellicle polyphenols and antioxidant activities[D]. Beijing: Chinese Academy of Forestry, 2013.
    [9]
    曲文娟, 凡威, 曹非凡, 等. 核桃的变温滚筒催化红外-热风联合干燥[J]. 现代食品科技,2021,37(7):1−12. [QU W J, FAN W, CAO F F, et al. Walnut drying by combined drum catalytic infrared with a variable temperature and hot air[J]. Modern Food Science and Technology,2021,37(7):1−12.
    [10]
    王文倩, 王晗琦, 陈文, 等. 不同干燥方法对核桃品质及不饱和脂肪酸稳定性的影响[J]. 食品科学技术学报,2015,33(1):59−64. [WANG W Q, WANG H Y, CHEN W, et al. Effects of different drying methods on quality of walnuts and stability of unsaturated fatty acids[J]. Journal of Food Science and Technology,2015,33(1):59−64.
    [11]
    张倩茹, 尹蓉, 王贤萍. 热风干燥与真空冷冻干燥对果蔬粉酚类物质含量的影响[J]. 安徽农业科学,2017,45(16):106−108. [ZHANG Q R, YIN R, WANG X P. Comparison of phenolic content of the fruit and vegetable powder by hot-air drying and vacuum freeze drying[J]. Journal of Anhui Agricultural Science,2017,45(16):106−108. doi: 10.3969/j.issn.0517-6611.2017.16.032
    [12]
    GABEL M, PAN Z L, AMARATUNGA S, et al. Catalytic infrared dehydration of onions[J]. Journal of Food Science,2006,71(9):E351−E357. doi: 10.1111/j.1750-3841.2006.00170.x
    [13]
    陈文敏, 彭星星, 孙田奎, 等. 红外温度对超声处理红枣的干燥特性及品质影响[J]. 现代食品科技,2015,31(6):224−229,235. [CHEN W M, PENG X X, SUN T K, et al. Effect of infrared drying temperature on the drying characteristics and quality of jujube with ultrasonic pre-treatment[J]. Modern Food Science and Technology,2015,31(6):224−229,235.
    [14]
    雷宏杰, 纪珍珍, 杨沫, 等. 不同干燥方式对花椒叶品质特性的影响[J]. 食品工业科技,2017,38(13):158−162. [LEI H J, JI Z Z, YANG M, et al. Effect of different drying methods on the quality characteristic of dried pepper leaves[J]. Science and Technology of Food Industry,2017,38(13):158−162.
    [15]
    安啸, 张友青, 陈燕茹, 等. 2种干燥方式对山核桃贮藏品质变化的影响[J]. 浙江农业科学,2020,61(3):534−536. [AN X, ZHANG Y Q, CHEN Y R, et al. Effects of two conventional drying methods on quality changes of Chinese pecans during storage[J]. Journal of Zhejiang Agricultural Science,2020,61(3):534−536.
    [16]
    巩芳娥, 虎云青, 汪海, 等. 气调包装对不同青贮核桃商品性的影响[J]. 北方园艺, 2019(6): 124−128.

    GONG F E, HU Y Q, WANG H, et al. Effect of modified atmosphere packaging on commerical of different silage walnut[J]. Northern Horticulture, 2019(6): 124−128.
    [17]
    秦南南, 李学文, 齐志文, 等. 包装对薄皮核桃贮藏品质的影响[J]. 保鲜与加工,2020,20(4):62−68. [QIN N N, LI X W, QI Z W, et al. Effect of packaging on the storage quality of thin-skinned walnuts[J]. Storage ang Process,2020,20(4):62−68. doi: 10.3969/j.issn.1009-6221.2020.04.010
    [18]
    王一峰, 王明霞, 赵淑玲, 等. 不同贮藏方式对鲜食核桃品质的影响[J]. 保鲜与加工,2020,20(5):40−47. [WANG Y F, WANG M X, ZHAO S L, et al. Effect of different storage methods on quality of fresh walnut[J]. Storage ang Process,2020,20(5):40−47. doi: 10.3969/j.issn.1009-6221.2020.05.007
    [19]
    于江, 颉敏华, 吴小华, 等. 不同贮藏温度对干核桃贮藏品质及抗氧化活性的影响[J]. 保鲜与加工,2020,20(3):26−33. [YU J, XIE M H, WU X H, et al. Effects of different storage temperatures on storage quality and antioxidant activity of dry walnut[J]. Storage ang Process,2020,20(3):26−33. doi: 10.3969/j.issn.1009-6221.2020.03.005
    [20]
    吴中华, 李文丽, 赵丽娟, 等. 枸杞分段式变温热风干燥特性及干燥品质[J]. 农业工程学报,2015,31(11):287−293. [WU Z H, LI W L, ZHAO L J, et al. Drying characteristics and product quality of Lycium barbarum under stages-varying temperatures drying process[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(11):287−293. doi: 10.11975/j.issn.1002-6819.2015.11.041
    [21]
    孟阿会. 核桃油成分及抗氧化性质研究[D]. 北京: 北京林业大学, 2012.

    MENG A H. Study on components and antioxidative function of walnut oil[D]. Beijing: Beijing Forestry University, 2012.
    [22]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 GB/T 5532-2008 动植物油脂碘值的测定[S]. 北京: 中国标准出版社, 2008.

    National Health and Family Planning Commission of the people’s Republic of China. National food safety standard GB/T 5532-2008 Determination of iodine value of animal and vegetable oils[S]. Beijing: China Standards Press, 2008.
    [23]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准GB 5009.229-2016食品中酸价的测定 [S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the people’s Republic of China. National food safety standard GB 5009.229-2016 Determination of acid value in food[S]. Beijing: China Standards Press, 2016.
    [24]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准GB 5009.227-2016 食品中过氧化值的测定 [S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the people’s Republic of China. National food safety standard GB 5009.227-2016 Determination of peroxide value in food[S]. Beijing: China Standards Press, 2016.
    [25]
    毛晓英. 核桃蛋白质的结构表征及其制品的改性研究[D]. 无锡: 江南大学, 2012.

    MAO X Y. Studies on the structure characterization and productions’ modification of walnut protein[D]. Wuxi: Jiangnan University, 2012.
    [26]
    耿树香, 宁德鲁, 贺娜, 等. 云南及北方主栽核桃蛋白氨基酸综合评价[J]. 西部林业科学,2018,47(3):78−85. [YE S X, NING D L, HE N, et al. Comprehensive evaluation of protein amino acids of walnut mainly planted in Yunnan and Northern China[J]. Journal of West China Forestry Science,2018,47(3):78−85.
    [27]
    刘芳, 王超, 杨菊, 等. 油脂酸价和过氧化值检测方法的研究进展[J]. 食品安全质量检测学报,2019,10(14):4478−4482. [LIU F, WANG C, YANG J, et al. Progress of determination methods for acid and peroxide values of oils and fats[J]. Journal of Food Safety and Quality,2019,10(14):4478−4482. doi: 10.3969/j.issn.2095-0381.2019.14.007
    [28]
    CHEN C, VENKITASAMY C, ZHANG W P, et al. Effect of step-down temperature drying on energy consumption and product quality of walnuts[J]. Journal of Food Engineering,2020,285(8):110105.
    [29]
    谢小雷, 李侠, 张春晖, 等. 牛肉干中红外-热风组合干燥工艺中水分迁移规律[J]. 农业工程学报,2014,30(14):322−330. [XIE X L, LI X, ZHANG C H, et al. Moisture mobility mechanism of beef jerky during combined mid-infrared and hot air drying[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(14):322−330. doi: 10.3969/j.issn.1002-6819.2014.14.040
    [30]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 GB 19300-2014坚果与籽类食品[S]. 北京: 中国标准出版社, 2014.

    National Health and Family Planning Commission of the people’s Republic of China. National food safety standard GB 19300-2014 Nuts and seeds[S]. Beijing: China Standards Press, 2014.
    [31]
    赵志刚. 山核桃仁油中脂肪酸组成的分析及评价[J]. 安徽农业科学,2009,37(6):2473−2474. [ZHAO Z G. Analysis and evaluation on fatty acid composition of hickory nut oil[J]. Journal of Anhui Agricultural Science,2009,37(6):2473−2474. doi: 10.3969/j.issn.0517-6611.2009.06.059
    [32]
    LEE E H. A review on applications of infrared heating for food processing in comparison to other industries-sciencedirect[J]. Innovative Food Processing Technologies,2021:431−455.
    [33]
    徐飞, 石爱民, 刘红芝, 等. 核桃油中脂肪酸和内源抗氧化物质含量及其氧化稳定性相关性分析[J]. 中国粮油学报,2016,31(3):53−58. [XU F, SHI A M, LIU H Z, et al. The content of fatty acids and endogenous antioxidant components of walnut oil and their correlation with oxidative stability index[J]. Journal of the Chinese Cereals and Oils Association,2016,31(3):53−58. doi: 10.3969/j.issn.1003-0174.2016.03.010
    [34]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 GB 5009.168-2016食品中脂肪酸的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the people’s Republic of China. National food safety standard GB 5009.168-2016 Determination of fatty acids in foods[S]. Beijing: China Standards Press, 2016.
    [35]
    张欣欣. 没食子酸改性超声辅助金枪鱼皮胶原蛋白-壳聚糖膜的制备及应用研究[D]. 镇江: 江苏大学, 2020.

    ZHANG X X. The preparation and application of gallic acid modified and ultrasound assisted films from tuna skin collagen-chitosan[D]. Zhenjiang: Jiangsu University, 2020.
    [36]
    CHOI W S, HAN J H. Film-forming mechanism and heat denaturation effects on the physical and chemical properties of pea-protein-isolate edible films[J]. Journal of Food Science,2002,67(4):1399−1406. doi: 10.1111/j.1365-2621.2002.tb10297.x
    [37]
    PEREIRA V A, ARRUDA I N Q D, STEFANI R. Active chitosan/PVA films with anthocyanins from brassica oleraceae (red cabbage) as time–temperature indicators for application in intelligent food packaging[J]. Food Hydrocolloids,2015,43(1):180−188.
    [38]
    汪岳刚. 鱿鱼片远红外辅助热泵干燥特性及其品质变化的研究[D]. 上海: 上海交通大学, 2014.

    WANG Y G. Changes in the characteristics and quality of squid fillets dried by far infrared radiation assisted heat pump[D]. Shanghai: Shanghai Jiao Tong University, 2014.
    [39]
    赵润泽, 蒋将, 李进伟, 等. 烘烤对核桃蛋白二级结构, 表面疏水性及乳化性的影响[J]. 食品工业科技,2016,37(16):157−160. [ZHAOR Z, JIANG J, LI J W, et al. Influence of roast processing on secondary structure, surface hydrophobicity and emulsifying properties of walnut protein[J]. Science ang Technology of Food Industry,2016,37(16):157−160.
    [40]
    夏珂. 热处理对苦荞蛋白结构及功能特性的影响[D]. 上海: 上海应用技术大学, 2016.

    XIA K. Influence of different heat treatment on structure and function characteristics of tartary buckwheat protein[D]. Shanghai: Shanghai University of Applied Sciences, 2016.
    [41]
    王长远, 郝天舒, 张敏. 干热处理对米糠蛋白结构与功能特性的影响[J]. 食品科学,2015,36(7):13−18. [WANG C Y, HAO T S, ZHANG M. Effect of dry heat treatment on structural and functional properties of rice bran protein[J]. Food Science,2015,36(7):13−18. doi: 10.7506/spkx1002-6630-201507003
    [42]
    MAO X Y, HUA Y F. Chemical composition, molecular weight distribution, secondary structure and effect of NaCl on functional properties of walnut (Juglans regia L) protein isolates and concentrates[J]. Journal of Food Science and Technology,2012,51(8):1473−1482.
    [43]
    吕彤, 林俊杰, 周昌瑜, 等. 热处理强度对猪肉肌球蛋白结构及风味成分吸附特性的影响[J]. 农业工程学报,2016,32(8):285−291. [LV T, LIN J J, ZHOU C Y, et al. Effect of heat treatment intensity on structure and binding capacity of volatile compounds of myosin[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(8):285−291. doi: 10.11975/j.issn.1002-6819.2016.08.040
    [44]
    FLOURNOY D S, FREY P A. Inactivation of the pyruvate dehydrogenase complex of Escherichia coli by fluoropyruvate[J]. Biochemistry,1989,28(25):9594−9602. doi: 10.1021/bi00451a007
    [45]
    REN Z F, YU X J, YAGOUB A E A, et al. Combinative effect of cutting orientation and drying techniques (hot air, vacuum, freeze and catalytic infrared drying) on the physicochemical properties of ginger (Zingiber officinale Roscoe)[J]. LWT-Food Science and Technology,2021,144:111238. doi: 10.1016/j.lwt.2021.111238
    [46]
    YAO L Y, FAN L P, DUAN Z H. Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices[J]. Food Chemistry,2020,305:125477. doi: 10.1016/j.foodchem.2019.125477
  • Cited by

    Periodical cited type(1)

    1. 汪芸萱,应勇,黄丽,满念薇,徐玉玲,张军涛,许承志. 蚕丝蛋白的体外自组装动力学行为研究. 广州化工. 2024(23): 25-27+41 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (176) PDF downloads (29) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return