Citation: | XUE Xuliang, LIU Xia, LU Xu, et al. Advantages and Applications of Dynamic Mechanics Analysis Technique in Food Research[J]. Science and Technology of Food Industry, 2022, 43(8): 453−462. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040282. |
[1] |
何乃普, 王荣民. 蛋白质与高分子的自组装[J]. 化学进展,2012,24(1):94−100. [HE N P, WANG R M. Self- assembly of protein with polymer[J]. Progress in Chemistry,2012,24(1):94−100.
|
[2] |
SABA N, JAWAID M, OTHMAN Y A, et al. A review on dynamic mechanical properties of natural fibre reinforced polymer composites[J]. Constr Build Mater,2016,10(6):149−159.
|
[3] |
CHARTOFF R P, MENCZEL J D, DILLMAN S H. Dynamic mechanical analysis (DMA)[M]. John Wiley & Sons, New York: Thermal Analysis of Polymers: Fundamentals and Applications, 2008: 387−495.
|
[4] |
吕建雄, 彭辉, 曹金珍, 等. 动态力学分析技术在木材科学研究领域的应用[J]. 林业工程学报,2018,3(5):1−11. [LV J X, PENG H, CAO J Z, et al. Application of dynamic mechanical analysis in wood science research[J]. Journal of Forestry Engineering,2018,3(5):1−11.
|
[5] |
FAN F, ROOS Y H. Structural relaxations of amorphous lactose and lactose-whey protein mixtures[J]. Journal of Food Engineering,2016,17(3):106−115.
|
[6] |
GUO G, ZHANG C, DU Z, et al. Structure and property of biodegradable soy protein isolate/PBAT blends[J]. Industrial Crops and Products,2015,7(4):731−736.
|
[7] |
BOF M J, BORDAGARAY V C, LOCASO D E, et al. Chitosan molecular weight effect on starch-composite film properties[J]. Food Hydrocolloids,2015,51(10):281−294.
|
[8] |
MAIDANNYK V A, LIM A S L, AUTY M A E, et al. Effects of lipids on the water sorption, glass transition and structural strength of carbohydrate-protein systems[J]. Food Research International,2019,116(2):1212−1222.
|
[9] |
GEARING J, MALIK K P, MATEJTSCHUK P. Use of dynamic mechanical analysis (DMA) to determine critical transition temperatures in frozen biomaterials intended for lyophilization[J]. Cryobiology,2010,61(1):27−32. doi: 10.1016/j.cryobiol.2010.04.002
|
[10] |
STOKES J R, XU Y. Rheology of food materials: Impact on and relevance in food processing[J]. Reference Module in Food Science,2019,1(1):1−8.
|
[11] |
FIGURA L O, TEIXEIRA A A. Food physics: Physical properties-measurement and application[M]. Berlin: Springer-Verlag, 2007: 115−121.
|
[12] |
AHMED J, RAMASWAMY H, KASAPIS S, et al. Novel food processing: Effects on rheological and functional properties[M]. Florida, Taylor & Francis Group: CRC Press, 2010.
|
[13] |
MOELANTS K R N, CARDINAELS R, BUGGENHOUT S V, et al. A review on the relationships between processing, food structure, and rheological properties of plant-tissue-based food suspensions[J]. Comprehensive Reviews in Food Defence & Food Safety,2014,13(3):241−260.
|
[14] |
XU C, LI Y. Development of carrot parenchyma softening during heating detected in vivo by dynamic mechanical analysis[J]. Food Control,2014,4(4):214−219.
|
[15] |
LI R, ROOS Y H, MIAO S. The effect of water plasticization and lactose content on flow properties of dairy model solids[J]. Journal of Food Engineering,2016,170(2):50−57.
|
[16] |
LI R, ROOS Y H, MIAO S. Roles of particle size on physical and mechanical properties of dairy model solids[J]. Journal of Food Engineering,2016,173(3):69−75.
|
[17] |
LI R, FENELON M, ROOS Y H, et al. The effects of composition and water plasticization on fluidness properties of dairy powders[C] // Timisoara, Romania: 8th International Conference on Water in Food, 2014: 25−32.
|
[18] |
LI R, ROOS Y H, MIAO S. Characterization of mechanical and encapsulation properties of lactose/maltodextrin/WPI matrix[J]. Food Hydrocolloids,2016,6(3):149−159.
|
[19] |
MAIDANNYK V, MCSWEENEY D J, HOGAN S A, et al. Water sorption and hydration in spray-dried milk protein powders: Selected physicochemical properties[J]. Food Chemistry,2020,304(1):1−9.
|
[20] |
ALBANO K M, FRANCO C M L, TELIS V. Rheological behavior of peruvian carrot starch gels as affected by temperature and concentration[J]. Food Hydrocolloids,2014,40:30−43. doi: 10.1016/j.foodhyd.2014.02.003
|
[21] |
CARRILLO-NAVAS H, HERNANDEZ-JAIMES C, UTRILLA-COELLO R G, et al. Viscoelastic relaxation spectra of some native starch gels[J]. Food Hydrocolloids,2014,37(6):25−33.
|
[22] |
李玫. 处理方式对鸡肉水分迁移及动态力学性质的影响[D]. 郑州: 河南农业大学, 2013.
LI M. Effects of treatments on the moisture mobility and dynamic mechanism of chicken[D]. Zhengzhou: Henan Agricultural University, 2013
|
[23] |
王一帆, 宋晓燕, 刘宝林, 等. 冷藏期间三文鱼片的力学特性变化[J]. 食品与发酵工业,2016,42(3):212−216. [WANG Y F, SONG X Y, LIU B L, et al. Changes in mechanical properties of salmon fillets during the cold storage[J]. Food and Fermentation Industries,2016,42(3):212−216.
|
[24] |
JOSEPH D M. Thermal analysis of textiles and fibers[M]. NewYork: Woodhead Publishing, 2020: 95−104.
|
[25] |
GARRIDO T, PENALBA M, KORO D L C, et al. A more efficient process to develop protein films derived from agro-industrial by-products[J]. Food Hydrocolloids,2017,86(1):11−17.
|
[26] |
ANTONIOU J, LIU F, MAJEED H, et al. Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study[J]. Food Hydrocolloids,2015,4(4):309−319.
|
[27] |
李凯. 基于玻璃化转变理论的稻谷籽粒干燥应力模拟[D]. 天津: 天津科技大学, 2018.
LI K. Simulation of grain drying stress based on glass transition theory[D]. Tianjin: Tianjin University of Science and Technology, 2018.
|
[28] |
黄立新, 周瑞君. 喷雾干燥过程中产品玻璃化温度转变和质量控制[J]. 林产化学与工业,2007,27(1):43−63. [HUANG L X, ZHOU R J. Variation of glass transition temperature and control of product quality during spray drying[J]. Chemistry and Industry of Forest Products,2007,27(1):43−63. doi: 10.3321/j.issn:0253-2417.2007.01.010
|
[29] |
詹世平, 陈淑花, 张欣华, 等. 非晶态粉体玻璃化转变温度的测量方法与装置[J]. 化学工程,2007,35(5):52−55. [ZHAN S P, CHEN S H, ZHANG X H, et al. A new method and equipment of determining glass transition temperature of amorphous macromolecule powders[J]. Chemical Engineering (China),2007,35(5):52−55. doi: 10.3969/j.issn.1005-9954.2007.05.014
|
[30] |
李永馨, 腾立军, 边宝林. 醇溶玉米蛋白膜的玻璃态转变及表面结构研究[J]. 食品科学,1997(1):19−22. [LIN Y X, TENG L J, BIAN B L. Study on glass transition and surface structure of zein films[J]. Food Science,1997(1):19−22. doi: 10.3321/j.issn:1002-6630.1997.01.005
|
[31] |
庞承焕, 吴博, 黄险波, 等. DSC测试玻璃化转变温度的优化方法[J]. 合成材料老化与应用,2019,48(3):23−25. [PANG C H, WU B, HUANG X B, et al. Optimization methods for glass transition temperature testing with DSC[J]. Synthetic Materials Aging and Application,2019,48(3):23−25.
|
[32] |
ISLAM M N, ZHANG M, LIU H, et al. Effects of ultrasound on glass transition temperature of freeze-dried pear (Pyrus pyrifolia) using DMA thermal analysis[J]. Food & Bioproducts Processing,2006,94(2):29−38.
|
[33] |
AHMED J. Glass transition and phase transitions in food and biological materials[M]. New Jersey: Wiley-Blackwell, 2017: 261−279.
|
[34] |
艾文婷, 张敏, 黄汝国, 等. 热分析技术在食品热物性研究中的应用[J]. 食品工业科技,2016,37(19):377−386. [AI W T, ZHANG M, HUANG R G, et al. Application of thermal analysis technology in research of food’ s thermal properties[J]. Science and Technology of Food Industry,2016,37(19):377−386.
|
[35] |
MUDGETT R E. Electrical properties of foods[M]. London: Taylor & Francis, Incorporation, 2007: 128−146.
|
[36] |
PEREIR A P M, OLIVEIRA J C. Measurement of glass transition in native wheat flour by dynamic mechanical thermal analysis (DMTA)[J]. International Journal of Food Science & Technology,2001,35(2):183−192.
|
[37] |
KALICHEVSKY M T, JAROSZKIEWICZ E M, ABLETT S, et al. The glass transition of amylopectin measured by DSC, DMTA and NMR[J]. Carbohydrate Polymers,1992,18(2):77−88. doi: 10.1016/0144-8617(92)90129-E
|
[38] |
MENCZEL J D. Dynamic mechanical analysis (DMA) in fiber research[M]. Thermal Analysis of Textiles and Fibers, British: Woodhead Publishing, 2020: 95−104.
|
[39] |
VERÓNICA M B, PATRICIO R S, PAULO D-C et al. About the endothermal transitions of galactomannans: A multi-analytical DSC, LF-1H-NMR and DMA study[J]. Carbohydrate Polymers,2019,1(5):31−38.
|
[40] |
NAIL S L, JIANG S S, KNOPP S A. Fundamentals of freeze-drying. Pharmaceutical Biotechnology[M]. New York: Wiley-VCH Verlag GmbH & Co. KgaA, 2002: 281−360.
|
[41] |
胡丽娜, 张春芝, 岳远征, 等. 研究玻璃转变本质的新起点—玻璃态的慢β弛豫[J]. 科学通报,2010,55(2):115−131. [HU L N, ZHANG C Z, YUE Y Z, et al. A new starting point for the study of the nature of glass transition-slow β relaxation of glass state[J]. Chinese Science Bulletin,2010,55(2):115−131. doi: 10.1360/csb2010-55-2-115
|
[42] |
ANGEL C A. Relaxation in glassforming liquids and amorphous solids[J]. National Science Review,2000,88(6):3113−3157.
|
[43] |
ROOS Y H . Chapter 5. The Glassy State. Food Materials Science[M]. New York: Springer, 2008: 45-57.
|
[44] |
POTES N, KERRY J P, ROOS Y H. Additivity of water sorption, alpha-relaxations and crystallization inhibition in lactose-maltodextrin systems[J]. Carbohydrate Polymers,2012,89(4):1050−1059. doi: 10.1016/j.carbpol.2012.03.061
|
[45] |
LI R, LIN D, ROOS Y H, et al. Glass transition, structural relaxation and stability of spray-dried amorphous food solids: A review[J]. Drying Technology,2019,37(3):287−300. doi: 10.1080/07373937.2018.1459680
|
[46] |
CLARK J H, FARMER T J, HERRERODAVILA L, et al. Circular economy design considerations for research and process development in the chemical sciences[J]. Green Chemistry,2016,47(36):3914−3934.
|
[47] |
龚凌霄, 郝一铭, 王静, 等. 淀粉质可食用膜性质研究[J]. 中国食品学报,2016,16(8):23−29. [GONG L X, HAO Y M, WANG J, et al. Studies on property characteristics of starch based edible films[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(8):23−29.
|
[48] |
OYMACI P, ALTINKAYA S A. Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite[J]. Food Hydrocolloids,2016,54:1−9. doi: 10.1016/j.foodhyd.2015.08.030
|
[49] |
JAIN N, SINGH V K, CHAUHAn S. Dynamic and creep analysis of polyvinyl alcohol based films blended with starch and protein[J]. Journal of Polymer Engineering,2019,39(1):35−47.
|
[50] |
JONES A, MANDAL A, SHARMA S. Protein-based bioplastics and their antibacterial potential[J]. Journal of Applied Polymer Science,2015,132(18):115−122.
|
[51] |
CHUANG L, PANYOYAI N, SHANKS R, et al. Effect of sodium chloride on the glass transition of condensed starch systems[J]. Food Chemistry,2015,18(4):65−71.
|
[52] |
CHUANG L, PANYOYAI N, KATOPO L, et al. Calcium chloride effects on the glass transition of condensed systems of potato starch[J]. Food Chemistry,2016,199(5):791−798.
|
[53] |
ÁLVAREZ-CASTILLO E, DEL TORO A, AGUILAR J M, et al. Optimization of a thermal process for the production of superabsorbent materials based on a soy protein isolate[J]. Industrial Crops and Products,2018,125(5):73−81.
|
[54] |
TIAN H, GUO G, XIANG A, et al. Intermolecular interactions and microstructure of glycerol-plasticized soy protein materials at molecular and nanometer levels[J]. Polymer Testing,2018,6(7):197−204.
|
[55] |
邹文中, 温其标, 杨晓泉, 等. 大豆蛋白/谷朊粉复合材料的结构和性能[J]. 现代食品科技,2014,30(3):7−12. [ZOU W Z, WENG Q B, YANG X Q, et al. Structure and roperties of soy protein/wheat gluten power composites[J]. Modern Food Science and Technology,2014,30(3):7−12.
|
[56] |
TAN S, EBRAHIMI A, LANGRISH T. Controlled release of caffeine from tablets of spray-dried casein gels[J]. Food Hydrocolloids,2019,8(8):13−20.
|
[57] |
SCHULDT S, SCHNEIDER Y, ROHM H. High-speed cutting of foods: Cutting behavior and initial cutting forces[J]. Journal of Food Engineering,2018,230(8):55−62.
|
[58] |
BLAHOVEC J, LAHODOVÁ M, ZÁMEČNÍK J J F, et al. Potato tuber dynamic mechanical analysis at temperatures of starch gelatinization[J]. 2010, 5: 929−938.
|
[59] |
SHENG S Y, WANG L J, LI D, et al. Viscoelastic behavior of maize kernel studied by dynamic mechanical analyzer[J]. Carbohydrate Polymers,2014,112:350−358. doi: 10.1016/j.carbpol.2014.05.080
|
[60] |
BLAHOVEC J, KOURIM P. Combined mechanical (DMA) and dielectric (DETA) thermal analysis of carrot at temperatures 30-90 degrees C[J]. Journal of Food Engineering,2016,168:245−250. doi: 10.1016/j.jfoodeng.2015.07.044
|
[61] |
BLAHOVEC J, KOURIM P. et al. DMA and DETA thermal analysis of carrot during its drying at different air humidity[J]. Journal of Food Engineering,2017,217:217−221.
|
[62] |
BLAHOVEC J, KOUÍM P. Pulsed electric stimulated changes in potatoes during their cooking: DMA and DETA analysis[J]. Journal of Food Engineering,2019,240:183−190. doi: 10.1016/j.jfoodeng.2018.07.025
|
1. |
张潇,李波,聂远洋,贾洋洋,秦令祥,周海旭. 二段式超声辅助沸水提取香菇多糖工艺研究. 中国果菜. 2024(07): 29-33 .
![]() | |
2. |
唐慧芳. 甘薯生物活性成分及保健功效研究进展. 南方农业. 2024(15): 116-120 .
![]() | |
3. |
董伟,马生健,马文欣,罗艺婷,吴彩艳,李佳悦,陆静恩,杨桂容. 凉粉草多糖的理化性质及其体外抗氧化活性. 食品研究与开发. 2023(09): 52-58 .
![]() | |
4. |
曹心亭,毕海心,孙媛,王海波,赵前程,李智博. 加工方式对贝柱模拟消化产物中多糖结构和抗氧化活性的影响. 中国食品添加剂. 2023(05): 88-95 .
![]() | |
5. |
杜晗笑,冉军舰,孙俊良,邓艳文,李瑞雪,庞帅. 鼠李糖乳杆菌zrx01冻干菌粉的制备及工艺优化. 河南科技学院学报(自然科学版). 2023(06): 14-25 .
![]() | |
6. |
李思雨,刘红全,孙寒,徐琰杰,黄磊恒,龙寒,凌宏林,成江弈,杨堃峰. 小球藻胞内多糖提取纯化及其抗氧化活性. 食品工业科技. 2022(15): 209-219 .
![]() | |
7. |
钱燕芳,石晨莹,陈贵堂. 桑葚多糖超声提取、脱色工艺优化及其抗氧化活性分析. 食品工业科技. 2022(16): 201-210 .
![]() | |
8. |
王博,陈美琼,郭翔宇,杨诗琪,曹权富,张俊杰,朱梅. 马齿苋多糖提取优化及抗氧化活性研究. 北华大学学报(自然科学版). 2022(04): 471-477 .
![]() | |
9. |
董伟,马生健,郭俊先,罗皓,陶美华. 凉粉草多糖提取、结构特征和生物活性研究. 食品与机械. 2022(11): 168-175 .
![]() |