XUE Xuliang, LIU Xia, LU Xu, et al. Advantages and Applications of Dynamic Mechanics Analysis Technique in Food Research[J]. Science and Technology of Food Industry, 2022, 43(8): 453−462. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040282.
Citation: XUE Xuliang, LIU Xia, LU Xu, et al. Advantages and Applications of Dynamic Mechanics Analysis Technique in Food Research[J]. Science and Technology of Food Industry, 2022, 43(8): 453−462. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040282.

Advantages and Applications of Dynamic Mechanics Analysis Technique in Food Research

More Information
  • Received Date: April 26, 2021
  • Available Online: February 11, 2022
  • Dynamic mechanical analysis (DMA) is an important technique to study the feedback of polymer materials to external stress in various environments. In recent years, with the increasing popularity of interdisciplinary research, DMA shows great application value in characterizing the mechanical characteristics of food polymer materials. Therefore, this paper systematically reviewes the working principle of DMA technology, the advantages of determination of food materials and its specific application in the field of food research. The technology is applied to the determination of storage modulus and loss modulus of food materials α- relaxation monitoring and food glass transition temperature positioning reflect the characteristics of high sensitivity, good stability and high accuracy, which would provide a more scientific evaluation means for the determination of dynamic mechanical and physical properties of food. In the future, DMA technology could analyze the molecular change law through DMA vibration spectroscopy to develop food grade green cleaning materials, and be used as an auxiliary verification technology of traditional thermodynamic technology to further study the thermophysical properties of food.
  • [1]
    何乃普, 王荣民. 蛋白质与高分子的自组装[J]. 化学进展,2012,24(1):94−100. [HE N P, WANG R M. Self- assembly of protein with polymer[J]. Progress in Chemistry,2012,24(1):94−100.
    [2]
    SABA N, JAWAID M, OTHMAN Y A, et al. A review on dynamic mechanical properties of natural fibre reinforced polymer composites[J]. Constr Build Mater,2016,10(6):149−159.
    [3]
    CHARTOFF R P, MENCZEL J D, DILLMAN S H. Dynamic mechanical analysis (DMA)[M]. John Wiley & Sons, New York: Thermal Analysis of Polymers: Fundamentals and Applications, 2008: 387−495.
    [4]
    吕建雄, 彭辉, 曹金珍, 等. 动态力学分析技术在木材科学研究领域的应用[J]. 林业工程学报,2018,3(5):1−11. [LV J X, PENG H, CAO J Z, et al. Application of dynamic mechanical analysis in wood science research[J]. Journal of Forestry Engineering,2018,3(5):1−11.
    [5]
    FAN F, ROOS Y H. Structural relaxations of amorphous lactose and lactose-whey protein mixtures[J]. Journal of Food Engineering,2016,17(3):106−115.
    [6]
    GUO G, ZHANG C, DU Z, et al. Structure and property of biodegradable soy protein isolate/PBAT blends[J]. Industrial Crops and Products,2015,7(4):731−736.
    [7]
    BOF M J, BORDAGARAY V C, LOCASO D E, et al. Chitosan molecular weight effect on starch-composite film properties[J]. Food Hydrocolloids,2015,51(10):281−294.
    [8]
    MAIDANNYK V A, LIM A S L, AUTY M A E, et al. Effects of lipids on the water sorption, glass transition and structural strength of carbohydrate-protein systems[J]. Food Research International,2019,116(2):1212−1222.
    [9]
    GEARING J, MALIK K P, MATEJTSCHUK P. Use of dynamic mechanical analysis (DMA) to determine critical transition temperatures in frozen biomaterials intended for lyophilization[J]. Cryobiology,2010,61(1):27−32. doi: 10.1016/j.cryobiol.2010.04.002
    [10]
    STOKES J R, XU Y. Rheology of food materials: Impact on and relevance in food processing[J]. Reference Module in Food Science,2019,1(1):1−8.
    [11]
    FIGURA L O, TEIXEIRA A A. Food physics: Physical properties-measurement and application[M]. Berlin: Springer-Verlag, 2007: 115−121.
    [12]
    AHMED J, RAMASWAMY H, KASAPIS S, et al. Novel food processing: Effects on rheological and functional properties[M]. Florida, Taylor & Francis Group: CRC Press, 2010.
    [13]
    MOELANTS K R N, CARDINAELS R, BUGGENHOUT S V, et al. A review on the relationships between processing, food structure, and rheological properties of plant-tissue-based food suspensions[J]. Comprehensive Reviews in Food Defence & Food Safety,2014,13(3):241−260.
    [14]
    XU C, LI Y. Development of carrot parenchyma softening during heating detected in vivo by dynamic mechanical analysis[J]. Food Control,2014,4(4):214−219.
    [15]
    LI R, ROOS Y H, MIAO S. The effect of water plasticization and lactose content on flow properties of dairy model solids[J]. Journal of Food Engineering,2016,170(2):50−57.
    [16]
    LI R, ROOS Y H, MIAO S. Roles of particle size on physical and mechanical properties of dairy model solids[J]. Journal of Food Engineering,2016,173(3):69−75.
    [17]
    LI R, FENELON M, ROOS Y H, et al. The effects of composition and water plasticization on fluidness properties of dairy powders[C] // Timisoara, Romania: 8th International Conference on Water in Food, 2014: 25−32.
    [18]
    LI R, ROOS Y H, MIAO S. Characterization of mechanical and encapsulation properties of lactose/maltodextrin/WPI matrix[J]. Food Hydrocolloids,2016,6(3):149−159.
    [19]
    MAIDANNYK V, MCSWEENEY D J, HOGAN S A, et al. Water sorption and hydration in spray-dried milk protein powders: Selected physicochemical properties[J]. Food Chemistry,2020,304(1):1−9.
    [20]
    ALBANO K M, FRANCO C M L, TELIS V. Rheological behavior of peruvian carrot starch gels as affected by temperature and concentration[J]. Food Hydrocolloids,2014,40:30−43. doi: 10.1016/j.foodhyd.2014.02.003
    [21]
    CARRILLO-NAVAS H, HERNANDEZ-JAIMES C, UTRILLA-COELLO R G, et al. Viscoelastic relaxation spectra of some native starch gels[J]. Food Hydrocolloids,2014,37(6):25−33.
    [22]
    李玫. 处理方式对鸡肉水分迁移及动态力学性质的影响[D]. 郑州: 河南农业大学, 2013.

    LI M. Effects of treatments on the moisture mobility and dynamic mechanism of chicken[D]. Zhengzhou: Henan Agricultural University, 2013
    [23]
    王一帆, 宋晓燕, 刘宝林, 等. 冷藏期间三文鱼片的力学特性变化[J]. 食品与发酵工业,2016,42(3):212−216. [WANG Y F, SONG X Y, LIU B L, et al. Changes in mechanical properties of salmon fillets during the cold storage[J]. Food and Fermentation Industries,2016,42(3):212−216.
    [24]
    JOSEPH D M. Thermal analysis of textiles and fibers[M]. NewYork: Woodhead Publishing, 2020: 95−104.
    [25]
    GARRIDO T, PENALBA M, KORO D L C, et al. A more efficient process to develop protein films derived from agro-industrial by-products[J]. Food Hydrocolloids,2017,86(1):11−17.
    [26]
    ANTONIOU J, LIU F, MAJEED H, et al. Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study[J]. Food Hydrocolloids,2015,4(4):309−319.
    [27]
    李凯. 基于玻璃化转变理论的稻谷籽粒干燥应力模拟[D]. 天津: 天津科技大学, 2018.

    LI K. Simulation of grain drying stress based on glass transition theory[D]. Tianjin: Tianjin University of Science and Technology, 2018.
    [28]
    黄立新, 周瑞君. 喷雾干燥过程中产品玻璃化温度转变和质量控制[J]. 林产化学与工业,2007,27(1):43−63. [HUANG L X, ZHOU R J. Variation of glass transition temperature and control of product quality during spray drying[J]. Chemistry and Industry of Forest Products,2007,27(1):43−63. doi: 10.3321/j.issn:0253-2417.2007.01.010
    [29]
    詹世平, 陈淑花, 张欣华, 等. 非晶态粉体玻璃化转变温度的测量方法与装置[J]. 化学工程,2007,35(5):52−55. [ZHAN S P, CHEN S H, ZHANG X H, et al. A new method and equipment of determining glass transition temperature of amorphous macromolecule powders[J]. Chemical Engineering (China),2007,35(5):52−55. doi: 10.3969/j.issn.1005-9954.2007.05.014
    [30]
    李永馨, 腾立军, 边宝林. 醇溶玉米蛋白膜的玻璃态转变及表面结构研究[J]. 食品科学,1997(1):19−22. [LIN Y X, TENG L J, BIAN B L. Study on glass transition and surface structure of zein films[J]. Food Science,1997(1):19−22. doi: 10.3321/j.issn:1002-6630.1997.01.005
    [31]
    庞承焕, 吴博, 黄险波, 等. DSC测试玻璃化转变温度的优化方法[J]. 合成材料老化与应用,2019,48(3):23−25. [PANG C H, WU B, HUANG X B, et al. Optimization methods for glass transition temperature testing with DSC[J]. Synthetic Materials Aging and Application,2019,48(3):23−25.
    [32]
    ISLAM M N, ZHANG M, LIU H, et al. Effects of ultrasound on glass transition temperature of freeze-dried pear (Pyrus pyrifolia) using DMA thermal analysis[J]. Food & Bioproducts Processing,2006,94(2):29−38.
    [33]
    AHMED J. Glass transition and phase transitions in food and biological materials[M]. New Jersey: Wiley-Blackwell, 2017: 261−279.
    [34]
    艾文婷, 张敏, 黄汝国, 等. 热分析技术在食品热物性研究中的应用[J]. 食品工业科技,2016,37(19):377−386. [AI W T, ZHANG M, HUANG R G, et al. Application of thermal analysis technology in research of food’ s thermal properties[J]. Science and Technology of Food Industry,2016,37(19):377−386.
    [35]
    MUDGETT R E. Electrical properties of foods[M]. London: Taylor & Francis, Incorporation, 2007: 128−146.
    [36]
    PEREIR A P M, OLIVEIRA J C. Measurement of glass transition in native wheat flour by dynamic mechanical thermal analysis (DMTA)[J]. International Journal of Food Science & Technology,2001,35(2):183−192.
    [37]
    KALICHEVSKY M T, JAROSZKIEWICZ E M, ABLETT S, et al. The glass transition of amylopectin measured by DSC, DMTA and NMR[J]. Carbohydrate Polymers,1992,18(2):77−88. doi: 10.1016/0144-8617(92)90129-E
    [38]
    MENCZEL J D. Dynamic mechanical analysis (DMA) in fiber research[M]. Thermal Analysis of Textiles and Fibers, British: Woodhead Publishing, 2020: 95−104.
    [39]
    VERÓNICA M B, PATRICIO R S, PAULO D-C et al. About the endothermal transitions of galactomannans: A multi-analytical DSC, LF-1H-NMR and DMA study[J]. Carbohydrate Polymers,2019,1(5):31−38.
    [40]
    NAIL S L, JIANG S S, KNOPP S A. Fundamentals of freeze-drying. Pharmaceutical Biotechnology[M]. New York: Wiley-VCH Verlag GmbH & Co. KgaA, 2002: 281−360.
    [41]
    胡丽娜, 张春芝, 岳远征, 等. 研究玻璃转变本质的新起点—玻璃态的慢β弛豫[J]. 科学通报,2010,55(2):115−131. [HU L N, ZHANG C Z, YUE Y Z, et al. A new starting point for the study of the nature of glass transition-slow β relaxation of glass state[J]. Chinese Science Bulletin,2010,55(2):115−131. doi: 10.1360/csb2010-55-2-115
    [42]
    ANGEL C A. Relaxation in glassforming liquids and amorphous solids[J]. National Science Review,2000,88(6):3113−3157.
    [43]
    ROOS Y H . Chapter 5. The Glassy State. Food Materials Science[M]. New York: Springer, 2008: 45-57.
    [44]
    POTES N, KERRY J P, ROOS Y H. Additivity of water sorption, alpha-relaxations and crystallization inhibition in lactose-maltodextrin systems[J]. Carbohydrate Polymers,2012,89(4):1050−1059. doi: 10.1016/j.carbpol.2012.03.061
    [45]
    LI R, LIN D, ROOS Y H, et al. Glass transition, structural relaxation and stability of spray-dried amorphous food solids: A review[J]. Drying Technology,2019,37(3):287−300. doi: 10.1080/07373937.2018.1459680
    [46]
    CLARK J H, FARMER T J, HERRERODAVILA L, et al. Circular economy design considerations for research and process development in the chemical sciences[J]. Green Chemistry,2016,47(36):3914−3934.
    [47]
    龚凌霄, 郝一铭, 王静, 等. 淀粉质可食用膜性质研究[J]. 中国食品学报,2016,16(8):23−29. [GONG L X, HAO Y M, WANG J, et al. Studies on property characteristics of starch based edible films[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(8):23−29.
    [48]
    OYMACI P, ALTINKAYA S A. Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite[J]. Food Hydrocolloids,2016,54:1−9. doi: 10.1016/j.foodhyd.2015.08.030
    [49]
    JAIN N, SINGH V K, CHAUHAn S. Dynamic and creep analysis of polyvinyl alcohol based films blended with starch and protein[J]. Journal of Polymer Engineering,2019,39(1):35−47.
    [50]
    JONES A, MANDAL A, SHARMA S. Protein-based bioplastics and their antibacterial potential[J]. Journal of Applied Polymer Science,2015,132(18):115−122.
    [51]
    CHUANG L, PANYOYAI N, SHANKS R, et al. Effect of sodium chloride on the glass transition of condensed starch systems[J]. Food Chemistry,2015,18(4):65−71.
    [52]
    CHUANG L, PANYOYAI N, KATOPO L, et al. Calcium chloride effects on the glass transition of condensed systems of potato starch[J]. Food Chemistry,2016,199(5):791−798.
    [53]
    ÁLVAREZ-CASTILLO E, DEL TORO A, AGUILAR J M, et al. Optimization of a thermal process for the production of superabsorbent materials based on a soy protein isolate[J]. Industrial Crops and Products,2018,125(5):73−81.
    [54]
    TIAN H, GUO G, XIANG A, et al. Intermolecular interactions and microstructure of glycerol-plasticized soy protein materials at molecular and nanometer levels[J]. Polymer Testing,2018,6(7):197−204.
    [55]
    邹文中, 温其标, 杨晓泉, 等. 大豆蛋白/谷朊粉复合材料的结构和性能[J]. 现代食品科技,2014,30(3):7−12. [ZOU W Z, WENG Q B, YANG X Q, et al. Structure and roperties of soy protein/wheat gluten power composites[J]. Modern Food Science and Technology,2014,30(3):7−12.
    [56]
    TAN S, EBRAHIMI A, LANGRISH T. Controlled release of caffeine from tablets of spray-dried casein gels[J]. Food Hydrocolloids,2019,8(8):13−20.
    [57]
    SCHULDT S, SCHNEIDER Y, ROHM H. High-speed cutting of foods: Cutting behavior and initial cutting forces[J]. Journal of Food Engineering,2018,230(8):55−62.
    [58]
    BLAHOVEC J, LAHODOVÁ M, ZÁMEČNÍK J J F, et al. Potato tuber dynamic mechanical analysis at temperatures of starch gelatinization[J]. 2010, 5: 929−938.
    [59]
    SHENG S Y, WANG L J, LI D, et al. Viscoelastic behavior of maize kernel studied by dynamic mechanical analyzer[J]. Carbohydrate Polymers,2014,112:350−358. doi: 10.1016/j.carbpol.2014.05.080
    [60]
    BLAHOVEC J, KOURIM P. Combined mechanical (DMA) and dielectric (DETA) thermal analysis of carrot at temperatures 30-90 degrees C[J]. Journal of Food Engineering,2016,168:245−250. doi: 10.1016/j.jfoodeng.2015.07.044
    [61]
    BLAHOVEC J, KOURIM P. et al. DMA and DETA thermal analysis of carrot during its drying at different air humidity[J]. Journal of Food Engineering,2017,217:217−221.
    [62]
    BLAHOVEC J, KOUÍM P. Pulsed electric stimulated changes in potatoes during their cooking: DMA and DETA analysis[J]. Journal of Food Engineering,2019,240:183−190. doi: 10.1016/j.jfoodeng.2018.07.025
  • Cited by

    Periodical cited type(9)

    1. 张潇,李波,聂远洋,贾洋洋,秦令祥,周海旭. 二段式超声辅助沸水提取香菇多糖工艺研究. 中国果菜. 2024(07): 29-33 .
    2. 唐慧芳. 甘薯生物活性成分及保健功效研究进展. 南方农业. 2024(15): 116-120 .
    3. 董伟,马生健,马文欣,罗艺婷,吴彩艳,李佳悦,陆静恩,杨桂容. 凉粉草多糖的理化性质及其体外抗氧化活性. 食品研究与开发. 2023(09): 52-58 .
    4. 曹心亭,毕海心,孙媛,王海波,赵前程,李智博. 加工方式对贝柱模拟消化产物中多糖结构和抗氧化活性的影响. 中国食品添加剂. 2023(05): 88-95 .
    5. 杜晗笑,冉军舰,孙俊良,邓艳文,李瑞雪,庞帅. 鼠李糖乳杆菌zrx01冻干菌粉的制备及工艺优化. 河南科技学院学报(自然科学版). 2023(06): 14-25 .
    6. 李思雨,刘红全,孙寒,徐琰杰,黄磊恒,龙寒,凌宏林,成江弈,杨堃峰. 小球藻胞内多糖提取纯化及其抗氧化活性. 食品工业科技. 2022(15): 209-219 . 本站查看
    7. 钱燕芳,石晨莹,陈贵堂. 桑葚多糖超声提取、脱色工艺优化及其抗氧化活性分析. 食品工业科技. 2022(16): 201-210 . 本站查看
    8. 王博,陈美琼,郭翔宇,杨诗琪,曹权富,张俊杰,朱梅. 马齿苋多糖提取优化及抗氧化活性研究. 北华大学学报(自然科学版). 2022(04): 471-477 .
    9. 董伟,马生健,郭俊先,罗皓,陶美华. 凉粉草多糖提取、结构特征和生物活性研究. 食品与机械. 2022(11): 168-175 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (454) PDF downloads (36) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return