WU Jing, LIU Zuozuo, WU Jie, et al. Extraction and in Vitro Adsorption Properties of Dietary Fiber from Phyllanthus emblica Linn. Pomace[J]. Science and Technology of Food Industry, 2022, 43(2): 174−181. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040269.
Citation: WU Jing, LIU Zuozuo, WU Jie, et al. Extraction and in Vitro Adsorption Properties of Dietary Fiber from Phyllanthus emblica Linn. Pomace[J]. Science and Technology of Food Industry, 2022, 43(2): 174−181. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040269.

Extraction and in Vitro Adsorption Properties of Dietary Fiber from Phyllanthus emblica Linn. Pomace

More Information
  • Received Date: April 26, 2021
  • Available Online: November 19, 2021
  • An investigation was carried out to optimize the extraction process of dietary fiber from Phyllanthus emblica Linn. pomace, and the physicochemical properties and in vitro adsorption capacity of Phyllanthus emblica Linn. pomace, total dietary fiber (TDF), insoluble dietary fiber (IDF), and soluble dietary fiber (SDF) were investigated. The results showed that the optimal extraction process using alkali method was: Concentration of NaOH 8 g/L, material-to-liquid ratio of 1:35 (g:mL), treatment at 70 °C for 40 min, and the yield of IDF and SDF were 61.72%±0.04% and 17.57%±0.03%, respectively. Phyllanthus emblica Linn. pomace and its dietary fiber both had good hydration properties and oil-holding capacity. TDF had the lowest water holding and the highest swelling capacity significantly different from Phyllanthus emblica Linn. pomace, SDF and IDF (P<0.05). SDF had lowly capacity to oil-holding, swelling and fat, however under simulated stomach (pH2) which had the higher adsorption capacity for cholesterol and NO2- than Phyllanthus emblica Linn. pomace, TDF and IDF (P<0.05). The adsorption capacity of Phyllanthus emblica Linn. pomace and its dietary fiber on cholesterol and NO2 was related with pH in vitro. The cholesterol adsorption capacity of TDF and SDF were higher under simulating stomach pH, while the adsorption capacity of Phyllanthus emblica Linn. pomace and IDF on cholesterol were higher under simulating small intestine. The Phyllanthus emblica Linn. pomace and its dietary fiber had higher adsorption capacity on NO2 under stomach pH than simulated small intestinal pH. This paper studied the extraction and properties of dietary fiber from Phyllanthus emblica Linn. pomace, which could provide some theoretical reference for its application in health food.
  • [1]
    伍晓玲, 项昭保. 橄榄营养成分和生物活性物质研究进展[J]. 食品工业科技,2017,38(24):346−352. [WU Xiaoling, XIANG Zhaobao. Progress in nutritional components and bioactive components of Canarium album L

    J]. Science and Technology of Food Industry,2017,38(24):346−352.
    [2]
    袁建民, 何璐, 杨晓琼, 等. ICP-OES法测定余甘子不同器官中11种微量元素[J]. 热带农业科学,2019,39(7):79−86. [YUAN Jianmin, HE Lu, YANG Xiaoqiong, et al. Determination of eleven trace elements in different organs of Phyllanthus emblica L. by ICP-OES[J]. Chinese Journal of Tropical Agriculture,2019,39(7):79−86.
    [3]
    王荌, 车彦云, 夏杰, 等. 亲水色谱-超高效液相-串联质谱法测定滇橄榄中水解氨基酸研究[J]. 中国现代中药,2020,22(1):47−52, 64. [WANG An, CHE Yanyun, XIA Jie, et al. Determination of hydrolyzed amino acids by hydrophilic chromatography-ultra high performance liquid-tandem mass spectrometry in Phyllanthus emblica Linn

    J]. Modern Chinese Medicine,2020,22(1):47−52, 64.
    [4]
    HUANG H Z, QIU M, LIN J Z, et al. Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: A ystematic review of recent advances[J]. European Journal of Nutrition,2021(3):1−18.
    [5]
    兰杨, 姜红, 张仕谨, 等. 余甘子化学成分、药理活性及质量控制提升的研究进展[J]. 中国药业,2020,29(7):156−159. [LAN Yang, JIANG Hong, ZHANG Shijin, et al. Research progress on chemical constituents, pharmacological activities and quality control of Phyllanthus emblica[J]. China Pharmaceuticals,2020,29(7):156−159. doi: 10.3969/j.issn.1006-4931.2020.07.044
    [6]
    王津, 刘爽, 邹研, 等. 肠道膳食纤维和肠道微生物及相关疾病的研究进展[J]. 食品研究与开发,2020,41(11):201−207. [WANG Jin, LIU Shuang, ZOU Yan, et al. Research advances in the associations of dietary fiber with gut microbiota and related disease[J]. Food Research and Development,2020,41(11):201−207.
    [7]
    CARUSO R, KUFFA P, INOHARA N, et al. Dietary fiber deprivation quells colonic inflammation by targeting gut pathobionts in a new model of crohn’s disease[J]. Inflammatory Bowel Diseases,2021,160(35):53−54.
    [8]
    XIE Y, REN Y W, LI X L, et al. A review of the associations between dietary fiber intake and cancer prevention or prognosis[J]. Journal of Nutritional Oncology,2020,5(2):123−131. doi: 10.34175/jno202003003
    [9]
    李淼, 刘坤, 郑丽鲜. 膳食纤维与肠道微生物及相关疾病的研究进展[J]. 食品安全质量检测学报,2021,12(1):249−254. [LI Miao, LIU Kun, ZHENG Lixian, et al. Research progress of dietary fiber and intestinal microorganism and related diseases[J]. Journal of Food Safety & Quality,2021,12(1):249−254.
    [10]
    HUNT J E, HARTMANN B, SCHOONJANS K, et al. Dietary fiber is essential to maintain intestinal size, L-cell secretion, and intestinal integrity in mice[J]. Frontiers in Endocrinology, 2021,12.
    [11]
    李施瑶, 代玲敏, 范宜杰, 等. 化学法提取红树莓果渣可溶性膳食纤维的工艺优化[J]. 食品工业科技,2019,40(19):180−186,193. [LI Shiyao, DAI Lingmin, FAN Yijie, et al. Optimization of extraction process of soluble dietary fiber from aspberry pomaces by chemical method[J]. Science and Technology of Food Industry,2019,40(19):180−186,193.
    [12]
    丁莎莎, 黄立新, 张彩虹, 等. 油橄榄果渣膳食纤维碱法提取工艺优化及其理化性质研究[J]. 林产化学与工业,2017,37(1):116−122. [DING Shasha, HUANG Lixin, ZHANG Caihong, et al. Optimization of extraction technology of dietary fiber from olive pomace and its physicochemical characteristics[J]. Chemistry and Industry of Forest Products,2017,37(1):116−122. doi: 10.3969/j.issn.0253-2417.2017.01.015
    [13]
    周笑犁, 王瑞, 高蓬明, 等. 刺梨果渣膳食纤维的体外吸附性能[J]. 食品研究与开发,2018,39(2):187−191. [ZHOU Xiaoli, WANG Rui, GAO Pengming, et al. Adsorption capacity of dietary fibers from roxburgh rose pomace in vitro[J]. Food Research and Development,2018,39(2):187−191. doi: 10.3969/j.issn.1005-6521.2018.02.034
    [14]
    仝文玲, 郭玉如, 徐建国. 碱法和酶法提取方法对胡麻渣可溶性膳食纤维理化性质的影响[J]. 食品研究与开发,2019,40(23):93−97. [TONG Wenling, GUO Yuru, XU Jianguo. Effects of alkali and enzyme extraction methods on physicochemical properties of soluble dietary fiber from flax residue[J]. Food Research and Development,2019,40(23):93−97.
    [15]
    李琳, 张小康, 周子政, 等. 白萝卜不溶性膳食纤维提取方法的比较及其对饼干消化的影响[J]. 农产品加工,2020(7):38−41. [LI Lin, ZHANG Xiaokang, ZHOU Zizheng, et al. Comparison of extraction methods for insoluble dietary fiber of white radish and the effect of IDF on biscuits digestion[J]. Aem Roducts Rocessing,2020(7):38−41.
    [16]
    万仁口, 贺杨正, 李功景, 等. 酶解制备竹笋可溶性膳食纤维及其抗氧化活性研究[J]. 中国食品学报,2021,21(3):153−160. [WAN Renkou, HE Yangzheng, LI Gongjing, et al. Preparation and antioxidant activity of bamboo shoot soluble dietary fiber extracted by enzyme method[J]. Journal of Chinese Institute of Food Science and Tec,2021,21(3):153−160.
    [17]
    李晓宁, 郭咪咪, 段章群. 酸法制取大豆皮可溶性膳食纤维[J]. 中国油脂,2020,357(11):32−35,51. [LI Xiaoning, GUO Mimi, DUAN Zhangqun. Preparation of soluble dietary fiber from soybean hull by acid hydrolysis method[J]. China Oils and Fats,2020,357(11):32−35,51. doi: 10.12166/j.zgyz.1003-7969/2020.11.007
    [18]
    姜慧燕, 邹礼根, 翁丽萍, 等. 豆渣营养成分分析及蛋白质营养价值评价[J]. 食品工业,2020,41(6):325−328. [JIANG Huiyan, ZOU Ligen, WENG Liping, et al. Nutritional components analyzation and protein nutrition evaluation of soybean residue[J]. The Food Industry,2020,41(6):325−328.
    [19]
    吕秉霖, 袁尔东. 膳食纤维的改性及应用[J]. 粮食科技与经济,2019,44(3):78−81. [LV Binglin, YUAN Erdong. Modification and application of dietary fiber[J]. Grain Science and Technology and Economy,2019,44(3):78−81.
    [20]
    刘贺, 赵亚凡, 杨立娜, 等. 膳食纤维的结构特性及其调控肠道菌群改善糖尿病的研究进展[J]. 渤海大学学报(自然科学版),2019,40(4):289−297. [LIU He, ZHAO Yafan, YANG Lina, et al. The structural characteristics of dietary fiber and its regulation of intestinal flora and improvement of diabetes mellitus[J]. Journal of Bohai University (Natural Science Edition),2019,40(4):289−297.
    [21]
    杨明华, 太周伟, 俞政全, 等. 膳食纤维改性技术研究进展[J]. 食品研究与开发,2016,37(10):207−210. [YANG Minghua, TAI Zhouwei, YU Zhengquan, et al. The progress of the modification technologies on dietary fiber[J]. Food Research and Development,2016,37(10):207−210. doi: 10.3969/j.issn.1005-6521.2016.10.051
    [22]
    高晓丽, 王瑞, 闫艳华. 碱法提取黍米粉膳食纤维的研究[J]. 安徽农学通报,2017,23(21):105−107. [GAO Xiaoli, WANG Rui, YAN Yanhua. Study on extraction of dietary fiber from millet flour by alkaline method[J]. Anhui Agricultural Science Bulletin,2017,23(21):105−107. doi: 10.3969/j.issn.1007-7731.2017.21.043
    [23]
    邹兰, 任国文, 李梁. 碱法制备苹果梨渣膳食纤维工艺优化及物化特性研究[J]. 粮食与油脂,2019,32(4):72−75. [ZOU Lan, REN Guowen, LI Liang. Study on optimizing technology and physicochemical properties of dietary fiber from apple-pear pomace prepared by alkali method[J]. Cereals & Oils,2019,32(4):72−75. doi: 10.3969/j.issn.1008-9578.2019.04.021
    [24]
    杨桂霞, 许晓娟, 程志强, 等. 响应面法优化蓝莓果渣可溶性膳食纤维提取工艺[J]. 吉林农业大学学报,2015(6):739−745. [YANG Guixia, XU Xiaojuan, CHENG Zhiqiang, et al. Optimization of extraction technology of soluble dietary fiber from blueberry pomace by response surface method[J]. Journal of Jilin Agricultural University,2015(6):739−745.
    [25]
    王杰, 张莹, 杨娟, 等. 茶叶可溶性膳食纤维提取及理化特性分析[J]. 南方农业,2020,14(1):1−5,10. [WANG Jie, ZHANG Ying, YANG Juan, et al. Extraction of soluble dietary fiber from tea and analysis of physicochemical properties[J]. South China Agriculture,2020,14(1):1−5,10.
    [26]
    DENG M, LIN Y, DONG L, et al. Physicochemical and functional properties of dietary fiber from pummelo (Citrus grandis L. Osbeck) and grapefruit (Citrus paradisi Mcfad) cultivars[J]. Food Bioscience, 2021(1):100890.
    [27]
    张海芳, 李艳, 韩育梅, 等. 酶法改性对马铃薯渣膳食纤维单糖组分及理化性质的影响[J]. 食品研究与开发,2020,41(1):60−66. [ZHANG Haifang, LI Yan, HAN Yumei, et al. Effects of different enzymatic modifications on monosaccharide composition and physicochemical properties of dietary fiber from potato pulp[J]. Food Research and Development,2020,41(1):60−66.
    [28]
    周淑仪, 李敏. 百香果皮可溶性膳食纤维酶法提取及性质研究[J]. 食品科技,2019,44(7):283−290. [ZHOU Shuyi, LI Min. The enzymatic extraction and characterics of soluble dietary fiber from passion fruit peel[J]. Food Science and Technology,2019,44(7):283−290.
    [29]
    陈秋娟, 谢微, 韦师, 等. 香芋皮水溶性膳食纤维超声提取及其结构表征[J]. 食品工业,2020,41(3):20−24. [CHEN Qiu Juan, XIE Wei, WEI Shi, et al. Ultrasonic-assisted extraction and structural characterization of soluble dietary fiber from peel taro[J]. The Food Industry,2020,41(3):20−24.
    [30]
    刘秉书, 吴淑华, 孙谕莹, 等. 挤压豌豆纤维粉制备的不可溶膳食纤维油脂吸附能力研究[J]. 食品研究与开发,2020,41(9):50−55. [LIU Bingshu, WU Shuhua, SUN Yuying, et al. Study on the adsorption capacity of insoluble dietary fiber oil prepared from extruded pea fiber powder[J]. Food Research and Development,2020,41(9):50−55. doi: 10.12161/j.issn.1005-6521.2020.09.009
    [31]
    李晗, 杨宗玲, 毕永雪, 等. 超声辅助酶法提取西番莲果皮可溶性膳食纤维及理化性质[J]. 食品工业科技,2020,41(7):161−165,172. [LI Han, YANG Zongling, BI Yongxue, et al. Extraction of soluble dietary fiber from passiflora edulis peel by ultrasonic assisted enzymatic method and its physicochemical properties[J]. Science and Technology of Food Industry,2020,41(7):161−165,172.
    [32]
    罗明, 余卫强. 脂肪细胞内质网应激反应蛋白与肥胖的关系[J]. 中国临床解剖学杂志,2020,38(2):235−238. [LUO Ming, YU Weiqiang. Relationship between endoplasmic reticulum stress protein expression of adipocytes and obesity[J]. Chinese Journal of Clinical Anatomy,2020,38(2):235−238.
    [33]
    孟鹏, 刘晓凤, 衣振伟, 等. 牛樟芝不溶性膳食纤维吸附特性及结构表征研究[J]. 工业微生物,2020,50(5):1−8. [MENG Peng, LIU Xiaofeng, YI Zhenwei, et al. Adsorption properties and structure characterization of insoluble dietary fiber from Antrodia camphorate[J]. Industrial Microbiology,2020,50(5):1−8. doi: 10.3969/j.issn.1001-6678.2020.05.001
    [34]
    杨开, 杨振寰, 吴伟杰, 等. 雷笋膳食纤维酶法改性及其理化性能和结构变化[J]. 食品与发酵工业,2019,45(4):36−41. [YANG Kai, YANG Zhenhuan, WU Weijie, et al. Physicochemical properties and structural changes of bamboo shoots dietary fiber with enzymatic modification[J]. Food and Fermentation Industries,2019,45(4):36−41.
    [35]
    丁莎莎. 油橄榄果渣膳食纤维的制备、特性及改性研究[D]. 北京: 中国林业科学研究院, 2017.

    DING Shasha. Preparation, properties and modification of dietary fiberfrom olive pomace[D]. Beijing: Chinese Academy of Forestry, 2017.
    [36]
    ZHANG M Y, LIAO A M, THAKUR K, et al. Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution[J]. Food Chemistry,2019,297(NOVa1):124983.1−124983.9.
    [37]
    杨振寰. 雷笋膳食纤维改性及性能研究[D]. 杭州: 浙江工业大学, 2019.

    YANG Zhenhuan. Physicochemical properties of bamboo shoots dietary fiber with enzymatic modification[D]. Hangzhou: Zhejiang University of Technology, 2019.
    [38]
    司风玲, 刘小裕, 邓俊林. 玉木耳根膳食纤维提取工艺优化及理化性质测定[J]. 食品与发酵工业,2019,45(20):209−214. [SI Fengling, LIU Xiaoyu, DENG Junlin. Optimization of extraction process and physicochemical properties of dietary fiber from Auricularia cornea var. Li root[J]. Food and Fermentation Industries,2019,45(20):209−214.
    [39]
    曾蓓蓓, 常锦玉, 吕庆云, 等. 黑糯米米糠中水不溶膳食纤维功能特性研究[J]. 中国食物与营养,2019,25(6):51−55. [ZENG Beibei, CHANG Jinyu, LV Qingyun, et al. Functional properties of insoluble dietary fiber from black glutinous rice bran[J]. Food and Nutrition in China,2019,25(6):51−55. doi: 10.3969/j.issn.1006-9577.2019.06.011

Catalog

    Article Metrics

    Article views (238) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return