Citation: | WANG Qinfei, LIN Liming, ZHANG Zhenwen, et al. Establishment and Application of A Method for Detecting the Cyanogenic Glycoside in Sweet Cassava Root and Its Products[J]. Science and Technology of Food Industry, 2022, 43(2): 271−278. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040260. |
[1] |
BANEA-MAYAMBU J P, TYLLESKAR T, GITEBO N, et al. Geographical and seasonal association between linamarin and cyanide exposure from cassava and the upper motor neurone disease konzo in former Zaire[J]. Tropical Medicine & International Health,1997,2(12):1143−51.
|
[2] |
CRESSEY P, REEVE J. Metabolism of cyanogenic glycosides: A review[J]. Food and Chenical Toxicology,2019,125(3):225−232.
|
[3] |
OLUWOLE O S A, ONABOLU A O, LINK H, et al. Persistence of tropical ataxic neuropathy in a Nigerian community[J]. Journal of Neurology, Neurosurgery & Psychiatry,2000,69(1):96−101.
|
[4] |
BRADBURY J H, DENTON I C. Rapid wetting method to reduce cyanogen content of cassava flour[J]. Food Chemistry,2010,121(2):591−594. doi: 10.1016/j.foodchem.2009.12.053
|
[5] |
KASSA R M, KASENSA N L, MONTERROSO V H, et al. On the biomarkers and mechanisms of konzo, a distinct upper motor neuron disease associated with food (cassava) cyanogenic exposure[J]. Food and Chemical Toxicoligy,2011,49(3):571−578. doi: 10.1016/j.fct.2010.05.080
|
[6] |
BRADBURY J H, DENTON I C. Simple method to reduce the cyanogen content of gari made from cassava[J]. Food Chemistry,2010,123(3):840−845. doi: 10.1016/j.foodchem.2010.05.020
|
[7] |
张烨, 王珂, 刘石生. 外源β-葡萄糖苷酶处理结合异烟酸-吡唑啉酮分光光度法测定橡胶籽中氰化物含量[J]. 食品科学,2017,38(14):290−296. [ZHANG Y, WANG K, LIU S S. Spectrophotometric determination of cyanide content in rubber seeds using isonicotinic acid-pyrazolone after exogenous β-glucosidase pretreatment[J]. Food Science,2017,38(14):290−296. doi: 10.7506/spkx1002-6630-201714045
|
[8] |
BRADBURY M G, GAN S V E, BRADBURY J H. Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products[J]. Journal of the Science of Food and Agriculture,1999,79(4):593−610. doi: 10.1002/(SICI)1097-0010(19990315)79:4<593::AID-JSFA222>3.0.CO;2-2
|
[9] |
STOCHMAL A, OLESZEK W. Determination of c yanogenic glucosides in white clover (Trfolium repens L.) by high performance liquid chromatography[J]. Phytochemical Analysis,1994,5(5):271−272. doi: 10.1002/pca.2800050511
|
[10] |
SORNYOTHA S, KYU K L, RATANAKHANOKCHAI K. Purification and detection of linamarin from cassava root cortex by high performance liquid chromatography[J]. Food Chemistry,2007,104(4):1750−1754. doi: 10.1016/j.foodchem.2006.10.071
|
[11] |
邹良平, 起登凤, 李玖慧, 等. 高效液相色谱-蒸发光检测法测定木薯生氰糖苷的含量[J]. 中国农学通报,2014,30(24):47−51. [ZOU L P, QI D F, LI J H, et al. Using high performance liquid chromatography (HPLC)-evaporative light detector assay for content determination of cyanogenic glucosides in cassava[J]. Chinese Agricultural Science Bulletin,2014,30(24):47−51. doi: 10.11924/j.issn.1000-6850.2014-0070
|
[12] |
ZHONG Y, XU T, CHEN Q, et al. Development and validation of eight cyanogenic glucosides via ultra-highperformance liquid chromatography-tandem mass spectrometry in agri food[J]. Food Chemistry,2020,331(30):1−7.
|
[13] |
MUZASHVILI T, MONIUSZKO-SZAJWAJ B, PECIO L, et al. Ultraperformance liquid chromatography tandem mass spectrometry determination of cyanogenic glucosides in trifolium species[J]. Journal of Agricultural and Food Chenistry,2014,62(8):1777−1782. doi: 10.1021/jf4056659
|
[14] |
刘易, 陈佳, 朱颖洁, 等. 基于表面增强拉曼光谱和顶空-气相色谱/氮磷检测技术的生氰糖苷类中成药中游离态氰化物含量测定[J]. 药物分析杂志,2018,38(7):1202−1209. [LIU Y, CHEN J, ZHU Y J, et al. Determination of free cyanide in Chinese patent medicines of cyanogenic glycosides based on surface-enhanced Raman spectroscopy and headspace/ gas chromatography-nitrogen and phosphorus detection techniques[J]. Chin J Pharm Anal,2018,38(7):1202−1209.
|
[15] |
周新成, 陈新, 卢诚, 等. 木薯叶片和块根中氰苷的快速提取[J]. 现代农业科技,2020(24):214−216, 220. [ZHOU X C, CHEN X, LU C, et al. Quick extraction of cyanogenic glycoside from cassava leaves and storage roots[J]. Modern Agricultural Technology,2020(24):214−216, 220. doi: 10.3969/j.issn.1007-5739.2020.24.085
|
[16] |
张振文, 林立铭, 徐缓, 等. 细度对食用木薯粉理化品质和消化特性的影响[J]. 中国粮油学报,2020,35(8):56−61. [ZHANG Z W, LIN L M, XU H, et al. Effects of physic-chemical traits and digestion characteristics on sweet cassava flour with different size[J]. Journal of the Chinses cereals and Oils Association,2020,35(8):56−61. doi: 10.3969/j.issn.1003-0174.2020.08.010
|
[17] |
张振文, 李开绵. 木薯及其食品加工技术[M]. 北京. 中国农业出版社, 2019: 65−105.
ZHANG Z W, LI K M. Cassava and its food processing technology [M]. Beijing: China Agriculture Press, 2019: 65−105.
|
[18] |
冯埃生, 邹汉法, 汪海林, 等. 影响高效液相色谱/挥发激光散射检测器检测性能基本因素的考察[J]. 药物分析杂志,1996,16(6):54−57. [FENG A S, ZOU H F, WANG H L, et al. Investigation of the basic factors affecting the detection performance of high performance liquid chromatography/volatile laser scattering detector[J]. Chinese Journal of Pharmaceutical Analysis,1996,16(6):54−57.
|
[19] |
王巧娥, 丁明玉. 蒸发光散射检测技术研究进展[J]. 分析测试学报,2006,25(6):126−132. [WANG Qiaoe, DING Mingyu. Progress on evaporative light-scattering detection[J]. Journal of Instrumental Analysis,2006,25(6):126−132. doi: 10.3969/j.issn.1004-4957.2006.06.036
|
[20] |
BRADBURY J H. Development of a sensitive picrate method to determine total cyanide and acetone cyanohydrin contents of gari from cassava[J]. Food Chemistry,2009,113(4):1329−1333. doi: 10.1016/j.foodchem.2008.08.081
|
[21] |
王琴飞, 蔡坤, 林立铭, 等. 木薯茎杆基质比例对3种食用菌海藻糖含量的影响[J]. 食品科学,2016,37(18):102−106. [WANG Q F, CAI K, LIN L M, et al. Effect of cassava stalk substrate ratio on trehalose content in three cultivated edible fungi[J]. Food Science,2016,37(18):102−106. doi: 10.7506/spkx1002-6630-201618017
|
[22] |
NAMBISAN B, SUNDARESAN S. Distribution of linamarin and its metabolizing enzymes in cassava tissues[J]. Journal of the Science of Food & Agriculture,1994,66(4):503−507.
|
[23] |
韩和悦. 11个食用木薯品种的品质研究与评价[D]. 广州: 仲恺农业工程学院, 2017.
HAN H Y. Research and evaluation of 11 edible cassava breed’ quality[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2017.
|
[24] |
黄洁, 周建国. 木薯间套作与高效利用技术[M]. 海口: 海南出版社, 2015: 35.
HUANG J, ZHOU J G. Intercropping and high benefit utilization of cassava[M]. Haikou: Hainan Publishing House, 2015, 35.
|
[25] |
田静, 朱琳, 董朝霞, 等. 处理方法对木薯块根氢氰酸含量和营养成分的影响[J]. 草地学报,2017,25(4):875−879. [TIAN J, ZHU L, DONG Z X, et al. Effects of treatment methods on the hydrocyanic acid content and nutrient composition of cassava roots[J]. Acta Agrestia Sinica,2017,25(4):875−879.
|
[26] |
刘畅, 陈宇, 刘石生. 不同处理方法对木薯中氰化物残留的影响[J]. 食品科技,2014,39(12):190−193. [LIU C, CHEN Y, LIU S S. Different processing methods on the effect of cyanide residue in the cassava[J]. Food Science and Technology,2014,39(12):190−193.
|
[27] |
BRADBURY J H, DENTON I C. Mild methods of processing cassava leaves to remove cyanogens and conserve key nutrients[J]. Food Chemistry,2011,127(4):1755−1759. doi: 10.1016/j.foodchem.2011.02.053
|
[28] |
NAMBISAN, B. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety[J]. Food and Chemical Toxicology,2011,49(3):690−693. doi: 10.1016/j.fct.2010.10.035
|
[29] |
熊丽娜, 陆柏益. 农产品中生氰糖苷安全性及减控技术研究进展[J]. 中国食品学报,2014,14(2):208−216. [XIONG L N, LU B Y. Security and removal methods of cyanogenic glycoside in agricultural products[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(2):208−216.
|
[30] |
钟永恒, 陆柏益, 李开绵. 木薯质量安全、营养品质与加工利用新进展[J]. 中国食品学报,2019,19(6):284−292. [ZHONG Y H, LU B Y, LI K M. Research advances on the safety, nutrition and processing of cassava[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(6):284−292.
|