HUANG Meng, SU Liyuan, ZHANG Lihong, et al. Optimization of Supercritical CO2 Extraction Process and Analysis of Physicochemical Properties of Coffee Essential Oil[J]. Science and Technology of Food Industry, 2022, 43(3): 145−154. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040197.
Citation: HUANG Meng, SU Liyuan, ZHANG Lihong, et al. Optimization of Supercritical CO2 Extraction Process and Analysis of Physicochemical Properties of Coffee Essential Oil[J]. Science and Technology of Food Industry, 2022, 43(3): 145−154. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040197.

Optimization of Supercritical CO2 Extraction Process and Analysis of Physicochemical Properties of Coffee Essential Oil

More Information
  • Received Date: April 25, 2021
  • Available Online: December 19, 2021
  • Taking Baoshan small grain coffee beans from Yunnan Province as the object, the nutrient components of raw and cooked coffee beans were determined according to national standards. On the basis of single factor experiment, the process parameters of supercritical CO2 extraction of coffee essential oil were optimized by response surface(RSM). The physical and chemical indexes of the essential oil of raw and cooked coffee were determined. The fatty acid composition of raw and cooked coffee essential oil was analyzed by gas chromatography-hydrogen flame ionization detector (GC-FID). The results showed as follows: after roasting, the contents of water, water extract, caffeine, total sugar, crude fiber and crude fat in cooked coffee beans were significantly different from those in raw coffee beans (P<0.05); The optimum conditions of supercritical CO2 extraction were as follows: extraction pressure 25 MPa, extraction temperature 54 ℃ and extraction time 150 min. Under these conditions, the extraction yield of raw coffee essential oil was 13.98%. Before and after roasting treatment, there was no significant difference in the routine physical and chemical indexes of coffee essential oil, and all of them met the requirements of national standards. 15 and 16 fatty acids were detected by GC-FID, among which linoleic acid, palmitic acid, stearic acid and oleic acid were the main fatty acids. Roasting had no significant effect on the fatty acid composition of coffee beans, but there were some differences in the content of each fatty acid. In this study, roasting has a certain degree of influence on the indicators of coffee beans and coffee essential oil, which provides a scientific basis for the development of coffee industry in Yunnan.
  • [1]
    周斌, 任洪涛. 不同产地咖啡豆香气成分分析[J]. 食品研究与开发,2016,37(2):128−132. [ZHOU B, REN H T. Analysis of aroma components of coffee from different habitats[J]. Food Research and Development,2016,37(2):128−132. doi: 10.3969/j.issn.1005-6521.2016.02.032
    [2]
    孙娟. 我国咖啡产业国际竞争力及影响因素分析[J]. 中国热带农业,2013(2):19−21. [SUN J. Analysis on international competitiveness and influencing factors of coffee industry in China[J]. Chinese Tropical Agriculture,2013(2):19−21. doi: 10.3969/j.issn.1673-0658.2013.02.005
    [3]
    孙娟, 熊惠波. 世界咖啡产销情况及中国咖啡产业发展分析[J]. 世界农业,2010(2):38−40. [SUN J, XIONG H B. World coffee production and marketing situation and China's coffee industry development analysis[J]. World Agriculture,2010(2):38−40. doi: 10.3969/j.issn.1002-4433.2010.02.010
    [4]
    ESQUIVEL P, JIMÉNEZ V. Functional properties of coffee and coffee by-products[J]. Food Research International,2012,46(2):488−495. doi: 10.1016/j.foodres.2011.05.028
    [5]
    祝运海. 云南普洱咖啡产业发展综述[J]. 饮料工业,2012,15(12):3−7. [ZHU Y H. Overview of Yunnan Pu'er coffee industry development[J]. Beverage Industry,2012,15(12):3−7. doi: 10.3969/j.issn.1007-7871.2012.12.001
    [6]
    郭容琦, 罗心平, 李国鹏, 等. 云南小粒咖啡产业发展现状分析[J]. 广东农业科学,2009(3):209−212. [GUO R Q, LUO X P, LI G P, et al. Analysis on the development status of Yunnan small-grain coffee industry[J]. Guangdong Agricultural Sciences,2009(3):209−212. doi: 10.3969/j.issn.1004-874X.2009.03.075
    [7]
    BUDRYN G, NEBESNY E, ŻYŻELEWICZ D, et al. Influence of roasting conditions on fatty acids and oxidative changes of Robusta coffee oil[J]. European Journal of Lipid Science & Technology,2012,114(9):1052−1061.
    [8]
    CALLIGARIS S, MUNARI M, ARRIGHETTI G, et al. Insights into the physicochemical properties of coffee oil[J]. European Journal of Lipid Science & Technology,2009,111(12):1270−1277.
    [9]
    MARTIN M X, PABLOS F, GONZÁLEZ A G, et al. Fatty acid profiles as discriminant parameters for coffee varieties differentiation[J]. Talanta,2001,54(2):291−297. doi: 10.1016/S0039-9140(00)00647-0
    [10]
    MANCINI E, CAMELE I, ELSHAFIE H S, et al. Chemical composition and biological activity of the essential oil of Origanum vulgare ssp. hirtum from different areas in the southern apennines (Italy)[J]. Chemistry & Biodiversity,2014,11(4):639−651.
    [11]
    ELSHAFIE H S, MANCINI E, CAMELE I, et al. In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit[J]. Industrial Crops and Products,2015,66:11−15. doi: 10.1016/j.indcrop.2014.12.031
    [12]
    RIBEIRO-SANTOS R, ANDRADE M, MADELLA D, et al. Revisiting an ancient spice with medicinal purposes: Cinnamon[J]. Trends in Food Science & Technology,2017,62:154−169.
    [13]
    林霜霜, 邱珊莲, 郑开斌, 等. 柠檬香茅精油的成分分析及抑菌作用研究[J]. 中国农业科技导报,2017(10):95−101. [LIN S S, QIU S L, ZHENG K B, et al. Composition analysis and antibacterial activity of the essential oil from Cymbopogon citratus[J]. Journal of Agricultural Science and Technology,2017(10):95−101.
    [14]
    KOH K J, PEARCE A L, MARSHMAN G, et al. Tea tree oil reduces histamine-induced skin inflammation[J]. British Journal of Dermatology,2015,147(6):1212−1217.
    [15]
    刘阳, 李莎莉, 吴琦, 等. 大蒜挥发油提取工艺优化及GC-MS分析[J]. 中国调味品,2018,43(8):118−121. [LIU Y, LI S L, WU Q, et al. Extraction process optimization and GC-MS analysis of essential oil from garlic[J]. China Condiment,2018,43(8):118−121. doi: 10.3969/j.issn.1000-9973.2018.08.027
    [16]
    杨君, 张献忠, 高宏建, 等. 天然植物精油提取方法研究进展[J]. 中国食物与营养,2012,18(9):31−35. [YANG J, ZHANG X Z, GAO H J, et al. Research progress on extraction methods of natural plant essential oils[J]. Food and Nutrition in China,2012,18(9):31−35. doi: 10.3969/j.issn.1006-9577.2012.09.008
    [17]
    于勇杰, 张晶, 戴智慧, 等. 不同方法提取香榧假种皮提取物成分的GC-MS分析[J]. 核农学报,2014,28(8):1421−1429. [YU Y J, ZHANG J, DAI Z H, et al. GC-MS analysis of extract components ofTorreya grandis pseudoseed coat extracted by different methods[J]. Journal of Nuclear Agricultural Sciences,2014,28(8):1421−1429.
    [18]
    OMAR A K M, NORSALWANI T L T, ASMAH M S, et al. Implementation of the supercritical carbon dioxide technology in oil palm fresh fruits bunch sterilization: A review[J]. Journal of CO2 Utilization,2018,25:205−215. doi: 10.1016/j.jcou.2018.03.021
    [19]
    李国鹏, 何红艳, 罗心平, 等. 咖啡营养特性及营养诊断研究进展[J]. 中国农学通报,2009,25(1):248−250. [LI G P, HE H Y, LUO X P, et al. Advance of nutrition characteristic and diagnosis progress in coffee research[J]. Chinese Agricultural Science Bulletin,2009,25(1):248−250.
    [20]
    黄家雄, 李贵平. 中国咖啡遗传育种研究进展[J]. 西南农业学报,2008,21(4):1178−1181. [HUANG J X, LI G P. Research progress of coffee breeding in China[J]. Southwest China Journal of Agricultural Sciences,2008,21(4):1178−1181. doi: 10.3969/j.issn.1001-4829.2008.04.066
    [21]
    国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: GB 5009.3-2016[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. National food safety standard, determination of moisture in food: GB 5009.3-2016[S]. Beijing: Standards Press of China, 2016.
    [22]
    国家食品药品监督管理总局, 国家卫生和计划生育委员会. 食品安全国家标准 食品中蛋白质的测定: GB 5009.5-2016[S]. 北京: 中国标准出版社, 2016.

    State Food and Drug Administration, National Health and Family Planning Commission. National food safety standard, determination of protein in food: GB 5009.5-2016[S]. Beijing: Standards Press of China, 2016.
    [23]
    国家食品药品监督管理总局, 国家卫生和计划生育委员会. 食品安全国家标准 食品中脂肪的测定: GB 5009.6-2016[S]. 北京: 中国标准出版社, 2016.

    State Food and Drug Administration, National Health and Family Planning Commission. National food safety standard, determination of fat in food: GB 5009.6-2016[S]. Beijing: Standards Press of China, 2016.
    [24]
    中华人民共和国卫生部. 植物类食品中粗纤维的测定: GB/T 5009.10-2003[S]. 北京: 中国标准出版社, 2003.

    Ministry of Health of the People's Republic of China. Plant foods-determination of crude fiber: GB/T 5009.10-2003[S]. Beijing: Standards Press of China, 2003.
    [25]
    国家卫生和计划生育委员会. 食品安全国家标准 食品中灰分的测定: GB 5009.4-2016[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. National food safety standard, determination of ash in food: GB 5009.4-2016[S]. Beijing: Standards Press of China, 2016.
    [26]
    国家食品药品监督管理总局, 国家卫生和计划生育委员会. 茶 水浸出物测定: GB/T 8305-2013[S]. 北京: 中国标准出版社, 2013.

    State Food and Drug Administration, National Health and Family Planning Commission. Determination of tea water extract: GB/T 8305-2013[S]. Beijing: Standards Press of China, 2013.
    [27]
    国家卫生和计划生育委员会. 食品安全国家标准 饮料中咖啡因的测定: GB 5009.139-2014[S]. 北京: 中国标准出版社, 2014.

    National Health and Family Planning Commission. National food safety standard, determination of caffeine in beverages: GB 5009.139-2014[S]. Beijing: Standards Press of China, 2014.
    [28]
    国家标准化管理委员会, 国家质量监督检验检疫总局. 食用菌中总糖含量的测定: GB/T 15672-2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Determination of total sugar content in edible fungi: GB/T 15672-2009[S]. Beijing: Standards Press of China, 2009.
    [29]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 粮油检验 粮食、油料相对密度的测定: GB/T 5518-2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Inspection of grain and oils, determination of relative density of grain and oil: GB/T 5518-2008[S]. Beijing: Standards Press of China, 2008.
    [30]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 动植物油脂 折光指数的测定: GB/T 5527-2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Animal and vegetable fats and oils, determination of refractive index: GB/T 5527-2010[S]. Beijing: Standards Press of China, 2010.
    [31]
    国家卫生和计划生育委员会. 食品安全国家标准 食品中酸价的测定: GB 5009.229-2016[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. National food safety standard, determination of acid value in food: GB 5009.229-2016[S]. Beijing: Standards Press of China, 2016.
    [32]
    国家质量监督检验检疫总局. 动植物油脂 皂化值的测定: GB/T 5534-2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Animal and vegetable fats and oils, determination of saponification value: GB/T 5534-2008[S]. Beijing: Standards Press of China, 2008.
    [33]
    国家卫生和计划生育委员会. 食品安全国家标准 食品中过氧化值的测定: GB 5009.227-2016[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. National food safety standard, determination of peroxide value in food: GB 5009.227-2016[S]. Beijing: Standards Press of China, 2016.
    [34]
    周斌, 任洪涛. 烘焙程度对云南小粒咖啡香气品质的影响[J]. 食品研究与开发,2014,35(22):68−73. [ZHOU B, REN H T. Effect of different roast degree on aroma quality of coffee arabica in yunnan province[J]. Food Research and Development,2014,35(22):68−73. doi: 10.3969/j.issn.1005-6521.2014.22.020
    [35]
    SHAPLA U M, SOLAYMAN M, ALAM N, et al. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health[J]. Chemistry Central Journal,2018,12(1):35−53. doi: 10.1186/s13065-018-0408-3
    [36]
    MEHAYA F M, MOHAMMAD A A. Thermostability of bioactive compounds during roasting process of coffee beans[J]. Heliyon,2020,6(11):e05508. doi: 10.1016/j.heliyon.2020.e05508
    [37]
    CROZIER T, STALMACH A, LEAN M, et al. Espresso coffees, caffeine and chlorogenic acid intake: Potential health implications[J]. Food & Function,2012,3:30−33.
    [38]
    LIU Y, KITTS D D. Confirmation that the Maillard reaction is the principle contributor to the antioxidant capacity of coffee brews[J]. Food Research International,2011,44(8):2418−2424. doi: 10.1016/j.foodres.2010.12.037
    [39]
    苗笑雨, 谷大海, 王桂瑛, 等. 响应曲面法优化超临界CO2萃取虎掌菌精油工艺及其挥发性化合物成分分析[J]. 现代食品科技,2018,34(5):148−157. [MIAO X Y, GU D H, WANG G Y, et al. Optimization of supercritical CO2 extraction of essential oil from sarcodon aspratus by response surface methodology and analysis of its volatile compounds[J]. Modern Food Science and Technology,2018,34(5):148−157.
    [40]
    刘丽娜. 响应面法优化超临界CO2萃取红树莓籽精油的工艺[J]. 粮食与油脂,2019,32(8):40−42. [LIU L N. Optimization of supercritical CO2 extraction of red raspberry seed essential oil by response surface methodology[J]. Cereals & Oils,2019,32(8):40−42. doi: 10.3969/j.issn.1008-9578.2019.08.011
    [41]
    曾凡逵, 刘爱琴, 谭乐和, 等. 3个不同产地咖啡脂肪酸组成比较[J]. 热带作物学报,2011(8):1460−1463. [ZENG F K, LIU A Q, TAN L H, et al. Fatty acid composition of coffee oil from three different origins[J]. Chinese Journal of Tropical Crops,2011(8):1460−1463. doi: 10.3969/j.issn.1000-2561.2011.08.015
    [42]
    刘一军, 何松涛, 潘海浪. 进口棕榈油产品脂肪酸成分分析和比较[J]. 粮食与油脂,2003(12):35−36. [LIU Y J, HE S T, PAN H L. Components of fatty acids comparing and analysing for import palm oils[J]. Cereals & Oils,2003(12):35−36. doi: 10.3969/j.issn.1008-9578.2003.12.014
    [43]
    鲍建民. 多不饱和脂肪酸的生理功能及安全性[J]. 中国食物与营养,2006(1):45−46. [BAO J M. Physiological function and safety of polyunsaturated fatty acids[J]. Food and Nutrition in China,2006(1):45−46. doi: 10.3969/j.issn.1006-9577.2006.01.014
    [44]
    OLIVEIRA L S, FRANCA A S, JCF M, et al. Proximate composition and fatty acids profile of green and roasted defective coffee beans[J]. LWT-Food Science and Technology,2006,39(3):235−239. doi: 10.1016/j.lwt.2005.01.011
  • Related Articles

    [1]CHEN Fangxue, QIU Wenxing, SHEN Lingwei, LI Dongsheng, QIAO Yu, WU Wenjin, XIONG Guangquan, WANG Lan, DING Anzi, LI Xin, SHI Liu. Formation of Volatile Flavor Compounds and Changes in Fat Oxidation in Blunt-snout Bream by Traditional Sun-drying and Shade-drying[J]. Science and Technology of Food Industry, 2023, 44(14): 36-45. DOI: 10.13386/j.issn1002-0306.2022070072
    [2]XU Ruoyuan, XUE Jiyuan, WANG Min, ZHAO Xucui, SHEN Hui, GAO Sumin, MENG Xiangren, WANG Hengpeng. Effects of Different Thermal Treatments on Tenderness and Volatile Flavor Compounds of Beef[J]. Science and Technology of Food Industry, 2023, 44(4): 77-87. DOI: 10.13386/j.issn1002-0306.2022050168
    [3]LIU Dongao, XIE Shuangyu, LI Zhi, LI Tianyi, PENG Yuan, SUN Bo. Analysis on the Difference of the Volatile Flavor Compounds of Northeast Farmhouse Soybean Paste with Different Salt Concentrations[J]. Science and Technology of Food Industry, 2022, 43(19): 356-363. DOI: 10.13386/j.issn1002-0306.2022010003
    [4]LIU Yang, HUANG Jia, JIA Hongfeng, FANG Xiaowei, LONG Juyi, LAN Ning. Effects of Different Cooking Methods on Volatile Flavor Compounds in Beef[J]. Science and Technology of Food Industry, 2022, 43(10): 305-313. DOI: 10.13386/j.issn1002-0306.2021080198
    [5]LIU Guomin, QIN Weizhi, WEI Rongchang, YI Ruolan, LIAO Yujiao, ZHENG Xu, CHE Jianglü. Comparative Analysis of Volatile Flavor Compounds in Different Varieties (Lines) of Potatoes[J]. Science and Technology of Food Industry, 2022, 43(9): 284-292. DOI: 10.13386/j.issn1002-0306.2021080141
    [6]LING Shengnan, LIU Teyuan, CHEN Xueye, WANG Hongli, WANG Xichang, SHI Wenzheng. Effect of Different Thawing Methods on the Freshness and Volatile Flavor Compounds of Anchovy (Engraulis encrasicholus)[J]. Science and Technology of Food Industry, 2022, 43(5): 322-330. DOI: 10.13386/j.issn1002-0306.2021050273
    [7]JIANG Feng, ZHENG Xinru, ZHOU Changyi, JIANG Xiaoying, LIN Weiyan, LIU Yu, SU Wenjin, SU Guocheng. Effect of Lactobacillus reuteri on Volatile Flavor Compounds of Fermented Surimi[J]. Science and Technology of Food Industry, 2021, 42(12): 240-245. DOI: 10.13386/j.issn1002-0306.2020070234
    [8]XU Zihan, SHU Chang, LUO Zhongwei, LV Zhenzhen, ZHANG Wen, PAN Zhiming. Optimization of the HS-SPME-GC-MS Technique for Determination of Volatile Flavor Compounds in Pork by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(6): 252-259. DOI: 10.13386/j.issn1002-0306.2020050295
    [9]ZHU Li-jie, SHI Yue, LIU Xiu-ying, WANG Bo, TANG Ming-li, LIU He, HE Yu-tang, MA Tao. Solid phase micro- extraction combined with gas chromatography- mass spectrometry analysis of volatile flavor compounds of corn pancake[J]. Science and Technology of Food Industry, 2016, (10): 102-105. DOI: 10.13386/j.issn1002-0306.2016.10.011
    [10]YANG Li-ping, YI Shu-min, LI Xue-peng, XU Yong-xia, LI Ying-chang, LI Jian-rong. Volatile flavor compounds changing in dried- seasoned squid ( Dosidicus gigas) during the processing[J]. Science and Technology of Food Industry, 2015, (11): 265-272. DOI: 10.13386/j.issn1002-0306.2015.11.046
  • Cited by

    Periodical cited type(10)

    1. 韩勇. 饲料用连翘叶不同提取物体外抗炎抑菌活性的比较研究. 饲料工业. 2024(07): 86-92 .
    2. 滕文龙,吴永娜,王德富,牛颜冰. 连翘叶茶对肝癌细胞增殖和迁移功能的影响及其作用机制. 生物技术通报. 2024(04): 287-296 .
    3. 周孝琼,张海燕,郭水灵,王萌萌,陆元安,周华林,王华. 百香果果壳提取物对热应激小鼠的保护作用. 中国兽医杂志. 2024(05): 118-124 .
    4. 王中一,张治杰,姚亚乐,陈国雯,马小燕,安志霞,范碧玥,邱山桐,王萌. 连翘叶乙醇提取物对APAP诱导肝损伤小鼠氧化应激及炎症因子的影响. 甘肃农业大学学报. 2024(04): 1-8 .
    5. 陈星蕊,汤瑜晨,庄家蝶,黄亚南,钱心悦,张博涛,王梦苒,胡云飞. 连翘不同部位化学成分及药理作用研究进展. 甘肃中医药大学学报. 2024(06): 53-67 .
    6. 王学方,陈玲,宁二娟,归荣,王伟,范毅,王学兵,李晓. 连翘叶中7种成分的抗氧化活性研究. 饲料研究. 2023(02): 94-99 .
    7. 栗粟,陈红跃,樊艳,王灿,于洋,梁栋,申鹏,张小路. 连翘提取物对实验性自身免疫性甲状腺炎大鼠甲状腺损伤的影响. 中国免疫学杂志. 2023(05): 978-982 .
    8. 杨钰昆,杨岚清,梁小祥,王小敏. 连翘叶风味爆珠的制备工艺研究. 食品科技. 2022(01): 286-292 .
    9. 范碧玥,王萌,潘阳阳,安志霞,马小燕,叶得河,王桂荣. 连翘叶酶-醇提取物抗药物性肝损伤作用研究. 西北农林科技大学学报(自然科学版). 2022(10): 23-33 .
    10. 李欧,刘银,张晓燕,高小康. 十堰地区连翘叶提取物的抑菌和抗氧化活性研究. 饲料研究. 2021(23): 88-93 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return