Citation: | YUAN Lin, ZENG Jing, GUO Jianjun, et al. Sequence Analysis of an Endogenous Plasmid from Enterococcus faecalis and the Construction of Shuttle Vectors[J]. Science and Technology of Food Industry, 2021, 42(23): 141−149. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040175. |
[1] |
DE FILIPPIS F, PASOLLI E, ERCOLINI D. The food-gut axis: Lactic acid bacteria and their link to food, the gut microbiome and human health[J]. FEMS Microbiology Reviews,2020,44(4):454−489.
|
[2] |
WANG C, SHI C, ZHANG Y, et al. Microbiota in fermented feed and swine gut[J]. Applied Microbiology and Biotechnology,2018,102(7):2941−2948.
|
[3] |
MOKOENA M P. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review[J]. Molecules,2017,22(8):1255.
|
[4] |
KLEEREBEZEM M, KUIPERS O P, SMID E J. Lactic acid bacteria-a continuing journey in science and application[J]. FEMS Microbiology Reviews,2017,41(Supp_1):S1−S2.
|
[5] |
KLAENHAMMER T R. Get cultured: Eat bacteria[J]. Annual Review of Food Science and Technology,2019,10:1−20.
|
[6] |
PLAVEC T V, BERLEC A. Safety aspects of genetically modified lactic acid bacteria[J]. Microorganisms,2020,8(2):297.
|
[7] |
PENG K, KOUBAA M, BALS O, et al. Recent insights in the impact of emerging technologies on lactic acid bacteria: A review[J]. Food Research International,2020:109544.
|
[8] |
CHEN W, GU Z. Genomic analysis of lactic acid bacteria and their applications[M]. Singapore: Springer, 2018: 21-49.
|
[9] |
PETERBAUER C, MAISCHBERGER T, HALTRICH D. Food-grade gene expression in lactic acid bacteria[J]. Biotechnology Journal,2011,6(9):1147−1161.
|
[10] |
LANDETE J M. A review of food-grade vectors in lactic acid bacteria: From the laboratory to their application[J]. Critical Reviews in Biotechnology,2017,37(3):296−308.
|
[11] |
DUONG T, MILLER M J, BARRANGOU R, et al. Construction of vectors for inducible and constitutive gene expression inLactobacillus[J]. Microbial Biotechnology,2011,4(3):357−367.
|
[12] |
CUI Y, HU T, QU X, et al. Plasmids from food lactic acid bacteria: Diversity, similarity, and new developments[J]. International Journal of Molecular Sciences,2015,16(6):13172−13202.
|
[13] |
SUZUKI K, SHINOHARA Y, KURNIAWAN Y N. Role of plasmids in beer spoilage lactic acid bacteria: A review[J]. Journal of the American Society of Brewing Chemists,2020,79(1):1−16.
|
[14] |
CHO S W, YIM J, SEO S W. Engineering tools for the development of recombinant lactic acid bacteria[J]. Biotechnology Journal,2020,15(6):1900344.
|
[15] |
MORRONI G, BRENCIANI A, LITTA-MULONDO A, et al. Characterization of a new transferable MDR plasmid carrying the pbp5 gene from a clade B commensal Enterococcus faecium[J]. Journal of Antimicrobial Chemotherapy,2019,74(4):843−850.
|
[16] |
JENSEN L B, GARCIA-MIGURA L, VALENZUELA A J S, et al. A classification system for plasmids from Enterococci and other Gram-positive bacteria[J]. Journal of Microbiological Methods,2010,80(1):25−43.
|
[17] |
FANG L S, LAI Q, ZHONG Z M, et al. Sequence analysis of an endogenous plasmid in Lactobacillus plantarum and construction of a shuttle expression vector using it[J]. Food Science,2020,41(4):118−124.
|
[18] |
ZUO F, FENG X, SUN X, et al. Characterization of plasmid pML21 of Enterococcus faecalis ML21 from koumiss[J]. Current Microbiology,2013,66(2):103−105.
|
[19] |
GREEN M R, SAMBROOK J. Molecular cloning: A laboratory manual[M]. New York: Cold Spring Harbor Laboratory Press, 2012.
|
[20] |
CHEN Z, LIN J, MA C, et al. Characterization of pMC11, a plasmid with dual origins of replication isolated from Lactobacillus casei MCJ and construction of shuttle vectors with each replicon[J]. Applied Microbiology and Biotechnology,2014,98(13):5977−5989.
|
[21] |
FRIESENEGGER A, FIEDLER S, DEVRIESE L A, et al. Genetic transformation of various species of Enterococcus by electroporation[J]. FEMS Microbiology Letters,1991,79(2−3):323−328.
|
[22] |
WANG C, CUI Y, QU X. Optimization of electrotransformation (ETF) conditions in lactic acid bacteria (LAB)[J]. Journal of Microbiological Methods,2020:105944.
|
[23] |
LANDETE J M, ARQUÉS J L, PEIROTÉN Á, et al. An improved method for the electrotransformation of lactic acid bacteria: A comparative survey[J]. Journal of Microbiological Methods,2014,105:130−133.
|
[24] |
TERÁN L C, CUOZZO S A, ARISTIMUÑO FICOSECO M C, et al. Nucleotide sequence and analysis of pRC12 and pRC18, two theta-replicating plasmids harbored by Lactobacillus curvatus CRL 705[J]. PloS one,2020,15(4):e0230857.
|
[25] |
KIM S W, JEONG E J, KANG H S, et al. Role of RepB in the replication of plasmid pJB01 isolated from Enterococcus faecium JC1[J]. Plasmid,2006,55(2):99−113.
|
[26] |
WYCKOFF H A, BARNES M, GILLIES K O, et al. Characterization and sequence analysis of a stable cryptic plasmid from Enterococcus faecium 226 and development of a stable cloning vector[J]. Applied and Environmental Microbiology,1996,62(4):1481−1486.
|
[27] |
WANG Y. Spatial distribution of high copy number plasmids in bacteria[J]. Plasmid,2017,91:2−8.
|
[28] |
MARTÍNEZ-BUENO M, VALDIVIA E, GÁLVEZ A, et al. pS86, a new theta-replicating plasmid from Enterococcus faecalis[J]. Current Microbiology,2000,41(4):257−261.
|
[29] |
LILLY J, CAMPS M. Mechanisms of theta plasmid replication[J]. Plasmids:Biology and Impact in Biotechnology and Discovery,2015,3(1):33−44.
|
[30] |
SHERBA J J, HOGQUIST S, LIN H, et al. The effects of electroporation buffer composition on cell viability and electro-transfection efficiency[J]. Scientific Reports,2020,10(1):1−9.
|
[1] | HU Xiaoxia, DENG Lijuan, LIU Ruiting, SHI Rongmei. Evaluation of Medicinal Quality of Garlic Based on Principal Component Analysis[J]. Science and Technology of Food Industry, 2023, 44(12): 293-299. DOI: 10.13386/j.issn1002-0306.2022080237 |
[2] | HUANG Libiao, YUAN Yiyang, CHEN Lin, YANG Meiyan, PENG Zhiyuan, LU Xiaoting, GAO Xiangyang. Comprehensive Evaluation of Quality Characteristics of Different Mango Varieties Based on Principal Component Analysis and HS-SPME-GC-MS Technology[J]. Science and Technology of Food Industry, 2023, 44(3): 297-306. DOI: 10.13386/j.issn1002-0306.2022040221 |
[3] | Juanyuan HE, Xiang YU, Yanli FENG, Runfeng ZHANG, Lizhong CHEN, Hao HUANG. Muscle Quality Characterization and Principal Component Analysis of Deqing Shrimp[J]. Science and Technology of Food Industry, 2021, 42(8): 264-270. DOI: 10.13386/j.issn1002-0306.2020060342 |
[4] | GAO Yun, YU Zhi-fang. Quality Evaluation of Celery Based on Principal Component Analysis[J]. Science and Technology of Food Industry, 2020, 41(3): 308-314,320. DOI: 10.13386/j.issn1002-0306.2020.03.051 |
[5] | WEI Lu-lu, QIN Li-kang, WEN An-yan, ZHU Yi. Quality Evaluation of Different Varieties Millet Based on Principal Components Analysis[J]. Science and Technology of Food Industry, 2019, 40(9): 49-56. DOI: 10.13386/j.issn1002-0306.2019.09.010 |
[6] | LUO Hong-xia, WANG Li, JU Rong-hui, JIA Hong-liang, PAN Yan, LIN Shao-hua, ZHU Jian-chen. Quality Characteristics and Principal Component Analysis of Different Varieties of Millet Starch[J]. Science and Technology of Food Industry, 2018, 39(24): 11-17. DOI: 10.13386/j.issn1002-0306.2018.24.002 |
[7] | CAI Fang-yuan, WANG Pei, WANG Zhi-ting, LIU Jing, JIANG Mei. Evaluation of Rice Tofu Quality Based on Correlation Analysis and Principal Component Analysis[J]. Science and Technology of Food Industry, 2018, 39(17): 33-39,45. DOI: 10.13386/j.issn1002-0306.2018.17.006 |
[8] | YANG Ting, LEI Pan-deng, ZHOU Han-chen, DING Yong, CUI Peng, CHENG Man-huan, HUANG Jian-qin. Studies on aroma components in Taiping Houkui tea by HS-SPME-GC-MS coupled with principal component analysis[J]. Science and Technology of Food Industry, 2017, (10): 49-53. DOI: 10.13386/j.issn1002-0306.2017.10.001 |
[9] | LIU Sha-sha, ZHANG Bao-shan, SUN Xiao-yuan, LUO Teng. Principal components analysis of flavor compositions in Zizyphus jujube[J]. Science and Technology of Food Industry, 2015, (20): 72-76. DOI: 10.13386/j.issn1002-0306.2015.20.006 |
[10] | LUO Yan, RUAN Jun-xiang, SU Zhi-heng, LIN Cui, QIN Yang. Discrimination of liubao tea by FTIR and principal component analysis[J]. Science and Technology of Food Industry, 2014, (12): 55-57. DOI: 10.13386/j.issn1002-0306.2014.12.002 |
1. |
彭剑飞,施慧,李儒婷,郭苗苗,陈丽霞. 药食同源中药干预糖尿病及其并发症作用机制的研究进展. 河南中医. 2023(04): 625-630 .
![]() | |
2. |
相欢,崔春. 沙棘籽粕蛋白肽的稳定性及分离纯化. 食品科学. 2023(18): 49-57 .
![]() | |
3. |
王迪,李文霞,姚瑜,袁芳廷,袁木荣,彭强. 沙棘蛋白和多肽的提取及功能活性研究进展. 食品工业科技. 2022(03): 447-455 .
![]() | |
4. |
邢丽颖,李建颖,孙怡,韩东. 小浆果多肽研究进展. 粮食与油脂. 2022(02): 21-24 .
![]() | |
5. |
赵轶轩,王丽娜,屈凝伊. 沙棘果研究进展. 中国民族民间医药. 2022(03): 56-62 .
![]() | |
6. |
李文娟,初悦雷,潘雨欣,付王威,景智,胡勋矫,姚于飞,陈璿瑛. 白扁豆多糖通过HPA轴介导降血糖的作用机制. 食品工业科技. 2022(07): 361-367 .
![]() | |
7. |
刘均,李强,谭蓉. 基于糖代谢异常斑马鱼模型评价代用茶沙棘叶的降糖作用. 中国茶叶加工. 2022(01): 79-84 .
![]() | |
8. |
杨明翰,盛萍. 新疆药食同源资源开发研究与前景展望. 中国实验方剂学杂志. 2021(13): 234-243 .
![]() |