Citation: | ZHANG Chaozheng, LI Yi, ZHAO Hua. ARTP Mutagenesis Improves the Production of Chitosanase in Bacillus cereus[J]. Science and Technology of Food Industry, 2022, 43(1): 141−146. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040172. |
[1] |
BROEK L A M, BOERIU C G. Chitin and chitosan: Properties and applications[M]. John Wiley & Sons, Ltd: 2019-12-31.
|
[2] |
ZHANG W B, CHEN S. New progress in chitin/chitosan extraction and its application[J]. Journal of Fuqing Branch of Fujian Normal University,2008(2):18−25.
|
[3] |
EL A, GHAOUTH, A J, et al. Use of chitosan coating to reduce water loss and maintain quality of cucumber and bell pepper fruits[J]. Journal of Food Processing & Preservation, 1991, 15(5): 359−368.
|
[4] |
HE W Y, TIAN L, FANG F et al. Limited hydrolysis and conjugation of zein with chitosan oligosaccharide by enzymatic reaction to improve functional properties[J]. Food Chemistry,2021,348(prepublish):129035−129035.
|
[5] |
ZHAO Q, XIE Q X, XU H Y, et al. Research on the antibacterial properties of oligochitosan[J]. China Brewing,2021,40(3):44−47.
|
[6] |
FERNANDAEZ D C L, MENGIBAR M, et al. Films of chitosan and chitosan-oligosaccharide neutralized and thermally treated: Effects on its antibacterial and other activities[J]. Lwt-Food Science and Technology,2016,73:368−374. doi: 10.1016/j.lwt.2016.06.038
|
[7] |
XIONG A J, ZHANG Z Y, ZOU X H, et al. The biological functions of oligochitosan and its application in livestock production[J]. Animal Husbandry and Veterinary Today,2020,36(11):64−66.
|
[8] |
SUN C S, WANG S, WANG Y D, et al. Research progress on the functional properties of chitooligosaccharides[J/OL]. Food Industry Science and Technology: 1−15 [2021-04-09]. https://doi.org/10.13386/ j.issn1002-0306. 2020090280.
|
[9] |
KIM, SE K. Chitin, chitosan, oligosaccharides and their derivatives; biological activities and applications[M]. Continuous Production of Chitooligosaccharides by Enzymatic Hydrolysis, 2010.
|
[10] |
YU Y, LIU X F, MIAO J K, et al. Preparation and quality identification of Antarctic krill chitosan and chitosan oligosaccharide [J/OL]. Food Industry Science and Technology: 1−15 [2021-04-09]. https://doi.org/10.13386/j.issn1002-0306.2020100096.
|
[11] |
HU Y L, HONG W, TAN G X. Screening and identification of chitosanase-producing strains[J]. Journal of South-Central University for Nationalities(Natural Science Edition),2016,35(2):42−45.
|
[12] |
LIU Y, ZHAO H, ZHENG Y Y, et al. Screening, identification and fermentation conditions optimization of chitosanase-producing strains[J]. China Food Additives,2017(2):106−111.
|
[13] |
YUAN J Q, LIANG S, SUN Y X, et al. Progress in the preparation and biological activity of chitosan oligosaccharides[J]. Chemistry of Life,2019,39(4):759−765.
|
[14] |
CHEN X, CHAO Z, KANG L, et al. High-level expression and characterization of a highly thermostable chitosanase from Aspergillus fumigatusin Pichia pastoris[J]. 2012, 34(4): 689-694.
|
[15] |
CHENG G, JIAO S M, FENG C, et al. Pichia pastoris expression of Bacillus amyloliquefaciens chitosanase and its hydrolysis to prepare controllable chito-oligosaccharides[J]. Food Science,2019,40(8):73−78.
|
[16] |
DOAN C T, THI N T, VAN B N, et al. Production of a thermostable chitosanase from shrimp heads via Paenibacillus mucilaginosus TKU032 conversion and its application in the preparation of bioactive chitosan oligosaccharides[J]. Marine Drugs,2019,17(4):217. doi: 10.3390/md17040217
|
[17] |
LI H P, SUN W T, WANG H B, et al. Electrical features of radio-frequency, atmospheric-pressure, bare-metallic-electrode glow discharges[J]. Plasma Chemistry and Plasma Processing,2007,27(5):529−545. doi: 10.1007/s11090-007-9079-x
|
[18] |
ZHANG X, ZHANG X F, LI H P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechnology,2014,98(12):5387−5396. doi: 10.1007/s00253-014-5755-y
|
[19] |
LI G, LI H P, WANG L Y, et al. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium[J]. Applied Physics Letters,2008,92(22):221504. doi: 10.1063/1.2938692
|
[20] |
WANG L Y, HUANG Z L, LI G, et al. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma[J]. Journal of Applied Microbiology,2010,108(3):851−858. doi: 10.1111/j.1365-2672.2009.04483.x
|
[21] |
GAO Y D, LIU Y, GUO R, et al. The effect of ARTP mutagenesis on the enzymatic properties of chitosanase produced by Bacillus cereus[J]. Food Science and Technology,2021,46(3):1−7.
|
[22] |
REN S X. ARTP mutagenesis and gene-directed modification to select strains with high stable adenosine production[D]. Xinxiang: Henan Normal University, 2017.
|
[23] |
ZHANG X, ZHANG C, ZHOU Q Q, et al. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma(ARTP) and conventional mutagenesis[J]. Applied Microbiology and Biotechnology,2015,99(13):5639−5646. doi: 10.1007/s00253-015-6678-y
|
[24] |
LAROUSSI M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects[J]. Ieee Transactions on Plasma Science,2002,30(4):1409−1415. doi: 10.1109/TPS.2002.804220
|
[25] |
LAROUSSI M. Low temperature plasma-based sterilization: Overview and state-of-the-art[J]. Plasma Processes and Polymers,2005,2(5):391−400. doi: 10.1002/ppap.200400078
|
[26] |
ZHANG X Q, ZHANG X X, YANG C L, et al. ARTP mutagenesis and screening of a Bacillus subtilis antagonistic to tomato fusarium wilt[J]. Chinese Agricultural Science Bulletin,2020,36(26):44−49.
|
[27] |
CHRISTOPH O, MARGARETE N, JIN C W. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): The latest development[J]. Bioresources and Bioprocessing,2018,5(1):1−14. doi: 10.1186/s40643-017-0187-z
|
[28] |
DUAN S F, HUANG Y N, WANG J B, et al. Atmospheric pressure and room temperature plasma mutagenesis and breeding of high nitrogenase activity Azotobacter chroococcus[J]. China Agricultural Science and Technology Review,2021,23(5):194−201.
|
[29] |
ZHU Y L. Research on the experimental method for determination of bacterial growth curve[J]. Journal of Microbiology,2016,36(5):108−112.
|
[30] |
ZHANG Y Q, ZHANG J, CHANG H Y, et al. A new method for high-sensitivity determination of chitosanase activity and its comparative study[J]. Food Science,2013,34(9):277−281.
|
[31] |
ZHANG H F. On the definition of enzyme activity unit[J]. Research on Scientific Terminology,2005(1):38.
|
[32] |
GAO L Y. A rapid glucose oxidase activity determination method and application effect research[D]. Jinan: Qilu University of Technology, 2017.
|
[33] |
LI P W, LIU Y, LI R R, et al. Comparison of two methods for determination of glucose oxidase activity[J]. Food Industry Science and Technology,2013,34(12):71−75,80.
|
[34] |
JANION C. Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli[J]. International Journal of Biological Sciences,2008,4(6):338−344.
|
[35] |
SHAO S J. Study on the mutation and breeding of rennet-producing mold and its enzymatic properties[D]. Changchun: Jilin University, 2011.
|
[36] |
LIN Y, BRIGEN K, SUN J, et al. Screening of lactic acid bacteria and ARTP mutagenesis of high acid-producing strains[J/OL]. Food and Fermentation Industry: 1−8 [2021-06 -19]. https://doi.org/10.13995/j.cnki.11-1802/ts.026545.
|
[37] |
CHANG X C, HAN Y D, CHEN C, et al. Optimization of new fermentation technology for Bacillus subtilis[J]. Feed Research,2019,42(2):48−50.
|
[38] |
WANG H B, LI Y Q, WU K, et al. Screening and mutation breeding of high-producing chitosanase strains[J]. Journal of Anhui Agricultural Sciences,2011,39(14):8212−8214.
|
[39] |
XIONG J, WU X Y, QIU S Y, et al. Rapid mutagenesis and breeding of high-yield tanninase strains by normal pressure and room temperature plasma[J]. Food Industry Science and Technology,2017,38(4):225−230.
|
[40] |
FAN X L, XIAO C J, GU Q Y, et al. ARTP mutagenesis to select high-yield glucose oxidase strains and optimization of fermentation conditions[J]. Industrial Microorganisms,2015,45(1):15−19.
|
[41] |
LIANG J G, GU Q Y, QIN X D, et al. Breeding of high-yield nuclease P1 strain using atmospheric pressure room temperature plasma(ARTP) mutagenesis[J]. Food Industry Science and Technology,2015,36(21):183−186.
|
1. |
张珉畅,张艳新,郝佳楠,秦建春,林敏娟. 毛酸浆储藏病原菌分离鉴定和采后保鲜研究. 现代园艺. 2025(11): 1-5+11 .
![]() | |
2. |
杨小叶,王利强. 可食用材料制备液芯酸奶球及其性能研究. 包装与食品机械. 2024(05): 40-48 .
![]() | |
3. |
杨旭. 新型生物保鲜剂在食品微生物防控中的应用. 中外食品工业. 2024(18): 34-36 .
![]() | |
4. |
卢波斯,崔丹丹,沈宏. 海洋菌株Mitsuaria sp. SH-50产嗜热性壳聚糖酶CsnSH50的酶学性质表征及其应用. 现代食品科技. 2023(01): 50-58 .
![]() | |
5. |
吴可,李萌,李莹,马永生,范馨茹,赵前程. 海参贮藏保鲜机理及保鲜技术研究进展. 肉类研究. 2023(02): 46-53 .
![]() | |
6. |
杨絮,鲁淑彦,郭全友. 乳酸链球菌素对高水分烤虾贮藏中品质的影响. 食品工业科技. 2023(10): 330-335 .
![]() | |
7. |
张玉婷,赵思佳,景正义,李腾飞. 壳聚糖-花椒精油保鲜膜对圣女果常温贮藏效果影响. 现代食品. 2023(07): 219-222 .
![]() | |
8. |
李仲堃,李姿萱,刘辰昊,刘春娥. 壳聚糖对无水保活单环刺螠品质的影响. 食品与机械. 2022(05): 127-132 .
![]() | |
9. |
裴诺,杜宇凡,孙洁,汪之和. 超声改性对壳聚糖/淀粉复合膜特性的影响. 食品与发酵工业. 2022(18): 88-94 .
![]() | |
10. |
王晓,李亚娜,范兰兰,李增辉,吴凯旋. 壳聚糖/番茄花青素/ε-聚赖氨酸复合膜的制备与表征. 武汉轻工大学学报. 2022(06): 15-20 .
![]() |