LI Jing, LI Mingyuan, WANG Jilian, et al. Research Progress on Microbial Degradation of Cellulose[J]. Science and Technology of Food Industry, 2022, 43(9): 396−403. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040146.
Citation: LI Jing, LI Mingyuan, WANG Jilian, et al. Research Progress on Microbial Degradation of Cellulose[J]. Science and Technology of Food Industry, 2022, 43(9): 396−403. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040146.

Research Progress on Microbial Degradation of Cellulose

More Information
  • Received Date: April 14, 2021
  • Available Online: February 28, 2022
  • Cellulose is the most abundant renewable biomass raw material in nature and has great potential to solve the energy crisis. However, the comprehensive utilization rate of cellulose is low due to its complex structure, which is difficult to degrade. The degradation of cellulose by microorganism is an important strategy to realize its recycling. The microbial degradation of cellulose is reviewed from three aspects, including single strain, complex flora and optimized combination of isolates. The advantages and application values of each screening strategy are summarized and analyzed. Moreover, the microbial degradation mechanism and future development of cellulose are described to give opportunities for exploring new ideas of more efficient cellulose degradation.
  • [1]
    KARGAR F, MORTAZAVI M, MALEKI M, et al. Isolation, identification and in silico study of native cellulase producing bacteria[J]. Current Proteomics,2021,18(1):3−11. doi: 10.2174/1570164617666191127142035
    [2]
    SAJID M S, JABEEN F, HUSSAIN D, et al. Boronic acid functionalized fibrous cellulose for the selective enrichment of glycopeptides[J]. Journal of Separation Science,2020,43(7):1348−1355. doi: 10.1002/jssc.201900983
    [3]
    RAMEZANI N, SAIN M. Non-catalytic green solvent lignin isolation process from wheat straw and the structural analysis[J]. Renewable Energy,2019,140:292−303. doi: 10.1016/j.renene.2019.03.026
    [4]
    BARBOSA F C, SILVELLO M A, GOLDBECK R. Cellulase and oxidative enzymes: New approaches, challenges and perspectives on cellulose degradation for bioethanol production[J]. Biotechnology Letters,2020,42(6):875−884. doi: 10.1007/s10529-020-02875-4
    [5]
    ISLAM S, CHEN I, SISLER J, et al. Cellulose nanocrystal (CNC)-inorganic hybrid systems: Synthesis, properties and applications[J]. Journal of Materials Chemistry B,2018,6(6):864−883. doi: 10.1039/C7TB03016A
    [6]
    马泽林, 刘家亨, 黄序, 等. 微生物利用木质纤维素的研究进展[J]. 中国生物工程杂志,2017,37(6):124−133. [MA Z L, LIU J H, HUANG X, et al. Advances in microbial utilization of lignocellulose[J]. Chinese Academy of Sciences,2017,37(6):124−133.
    [7]
    PAN Z L, YANG H, SHI J X, et al. Screening identification and characterization of cellulose degrading bacteria[J]. Environmental Science and Management,2019,44(4):102−105.
    [8]
    SHEN F, ZHONG B, WANG Y, et al. Cellulolytic microflora pretreatment increases the efficiency of anaerobic co-digestion of rice straw and pig manure[J]. BioEnergy Research,2019,12(3):703−713. doi: 10.1007/s12155-019-10013-w
    [9]
    陈露露. 玉米秸秆降解菌的分离鉴定及其降解性能研究[D]. 哈尔滨: 黑龙江科技大学, 2019.

    CHEN L L. Isolation, identification and degradation performance of corn straw decomposed bacteria[D]. Harbin: Heilongjiang University of Science and Technology, 2019.
    [10]
    SUI M, RONG J, ZHANG Y, et al. Screening of cellulose degrading bacteria and construction of complex microflora[J]. IOP Conference Series Earth and Environmental Science,2021,632:032021. doi: 10.1088/1755-1315/632/3/032021
    [11]
    YU H J, GUO X L. Screening of straw-degrading bacteria and study on their cellulose-degrading performances[J]. Biotechnology Bulletin,2019,35(2):58.
    [12]
    李建树, 孙丽坤, 韩向敏, 等. 高温纤维素降解微生物的筛选、鉴定及其酶活力测定[J]. 甘肃农业大学学报,2020,55(3):29−37. [LI J S, SUN L K, HAN X M, et al. Screening, identification and determination of enzymatic activity of microorganisms degraded by high temperature cellulose[J]. Journal of Gansu Agricultural University,2020,55(3):29−37.
    [13]
    张名爱, 王宝维. 鹅源高活力纤维素分解菌的分离鉴定[J]. 中国家禽,2012,34(5):12−15. [ZHANG M A, WANG B W. Isolation and identification of highly active fibrin dissolving bacteria from goose sources[J]. China Poultry,2012,34(5):12−15. doi: 10.3969/j.issn.1004-6364.2012.05.004
    [14]
    杨娜, 何鑫, 杜春梅. 一株纤维素降解菌的筛选与鉴定[J]. 中国农学通报,2021,37(17):26−31. [YANG N, HE X, DU C M. Screening and identification of a cellulose degradation bacterium[J]. Chinese Agricultural Bulletin,2021,37(17):26−31. doi: 10.11924/j.issn.1000-6850.casb2021-0131
    [15]
    单建荣, 全鑫, 朱用哲, 等. 一株低温纤维素降解菌的筛选与产酶条件优化[J]. 生态学杂志,2021,40(4):1128−1136. [SHAN J R, Q X, ZHU Y Z, et al. Screening and optimization of enzyme conditions of a cryogen cellulose degradation bacterium[J]. Journal of Ecology,2021,40(4):1128−1136.
    [16]
    李灵灵, 王敬红, 赵铎, 等. 木质素降解菌BYL-7的筛选及降解条件优化[J]. 微生物学通报,2020,47(12):4059−4071. [LI L L, WANG J H, ZHAO D, et al. Optimizing the screening and degradation conditions of lignin degradation bacteria BYL-7[J]. Microbiology Bulletin,2020,47(12):4059−4071.
    [17]
    刘晓飞, 侯艳, 马京求, 等. 降解玉米芯木质纤维素放线菌的筛选与发酵条件优化[J]. 农业机械学报,2020,51(11):329−337. [LIU X F, HOU Y, MA J Q, et al. Efficient degradation and optimization of fermentation conditions of actinomycetes from corn cob[J]. Journal of Agricultural Machinery,2020,51(11):329−337. doi: 10.6041/j.issn.1000-1298.2020.11.036
    [18]
    刘心吾, 张威, 马玲玲, 等. 耐高温木质纤维素降解菌株的分离筛选、鉴定及降解工艺的研究[J]. 中国农学通报,2020,36(21):118−125. [LIU X W, ZHANG W, MA L L, et al. Study on separation, identification and degradation of high temperature-resistant lignocellulose degradation strains[J]. China Agricultural Science Bulletin,2020,36(21):118−125.
    [19]
    梅金飞, 刚利萍, 余梅霞, 等. 烟草秸秆废弃物中纤维素降解菌的筛选、鉴定及产酶条件优化[J]. 烟草科技,2020,53(8):15−23. [MEI J F, GANG L P, YU M X, et al. Screening, identification and optimization of enzyme conditions of cellulose bacteria in tobacco straw waste[J]. Tobacco Technology,2020,53(8):15−23.
    [20]
    ZHOU J Q, QIU Z P, HAN Y P, et al. Screening of a cellulose-degrading strain and its enzyme-producing conditions[J]. Journal of Environmental Engineering,2010,4(3):705−708.
    [21]
    冯骏, 姚达行, 李晨, 等. 高效低成本纤维素酶诱导物的制备、筛选及应用[J]. 基因组学与应用生物学,2017,36(6):2561−2568. [FENG J, YAO D X, LI C, et al. Preparation, screening and application of high efficiency and low cost cellulase inducers[J]. Genomics and Applied Biology,2017,36(6):2561−2568.
    [22]
    孟建宇, 李蘅, 樊兆阳, 等. 低温纤维素降解菌的分离与鉴定[J]. 应用与环境生物学报,2014,20(1):152−156. [MENG J Y, LI H, FAN Z Y, et al. Isolation and identification of low temperature cellulose degrading bacteria[J]. Chinese Journal of Applied and Environmental Biology,2014,20(1):152−156.
    [23]
    LU J, YANG Z M, XU W, et al. Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk[J]. Journal of Environmental Sciences,2019,78(4):120−128.
    [24]
    沈琦, 孙宏, 王新, 等. 猪粪中嗜热纤维素降解菌的筛选及其除臭特性研究[J]. 中国畜牧杂志,2020,56(10):162−166. [SHEN Q, SUN H, WANG X, et al. Study on the screening and deodorization characteristics of thermophilic cellulose degradation bacteria in pig manure[J]. Chinese Livestock Journal,2020,56(10):162−166.
    [25]
    LI X, HAN C, LI W, et al. Insights into the cellulose degradation mechanism of the thermophilic fungus Chaetomium thermophilum based on integrated functional omics[J]. Biotechnology for Biofuels,2020,13(1):1−8. doi: 10.1186/s13068-019-1642-1
    [26]
    GILLIGAN W, REESE E T. Evidence for multiple components in microbial cellulases[J]. Canadian Journal of Microbiology,1954,1(2):90−107. doi: 10.1139/m55-013
    [27]
    HORN S J, VAAJE-KOLSTAD G, WESTERENG B, et al. Novel enzymes for the degradation of cellulose[J]. Biotechnology for Biofuels,2012,5(1):45−45. doi: 10.1186/1754-6834-5-45
    [28]
    CHEN X, CHENG W, LI S, et al. The “quality” and “quantity” of microbial species drive the degradation of cellulose during composting[J]. Bioresource Technology, 2021, 320 (Pt B): 124425.
    [29]
    崔宗均, 李美丹, 朴哲. 一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J]. 环境科学,2002,23(3):36−39. [CUI Z J, LI M D, PU Z. Screening and function of a group of highly stable cellulose decomposition composite MC1[J]. Environmental Sciences,2002,23(3):36−39. doi: 10.3321/j.issn:0250-3301.2002.03.007
    [30]
    孟建宇, 杨帆, 冀锦华, 等. 大兴安岭森林土壤中纤维素降解真菌的分离及产酶条件优化[J]. 黑龙江畜牧兽医,2020,17:108−111, 120, 171. [MENG J Y, YANG F, JI J H, et al. Isolation and optimization of cellulose degrading fungi in Greater Hinggan Mountains[J]. Heilongjiang Animal Husbandry and Veterinary,2020,17:108−111, 120, 171.
    [31]
    王彦伟, 阮志勇, 江旭, 等. 一株耐受糠醛的纤维素降解菌Bacillus siamensis BREC-11的分离与鉴定[J]. 应用与环境生物学报,2018,24(4):889−893. [WANG Y W, RUAN Z Y, JIANG X, et al. Isolation and identification of Bacillus siamensis BREC-11, a cellulose degradation bacterium resistant to furfuraldehyde[J]. Application and Environmental Biology,2018,24(4):889−893.
    [32]
    SUKMAWATI D, DELLANERRA D, RISANDI A. Screening the capabilities of Indonesian indigenous mold in producing cellulase enzyme[J]. IOP Conference,2018,434:012125. doi: 10.1088/1757-899X/434/1/012125
    [33]
    SRIKANDACE Y, ANDAYANI D, KARINA M. Preliminary study of the degradation of biocellulose based film using soil fungi Aspergillus unguis TP3 and Paecilomyces marquandii TP4 producing cellulose[J]. IOP Conference Series: Earth and Environmental Science,2019,277(1):012001. doi: 10.1088/1755-1315/277/1/012001
    [34]
    SHANG T, QUANHONG L I, DENG S. Screening and isolation of highly efficient cellulose-degrading microorganisms and construction of complex microbial system[J]. Agricultural Science and Technology,2015,16(4):639−652.
    [35]
    黄开明, 赵立欣, 冯晶, 等. 复合微生物预处理玉米秸秆提高其厌氧消化产甲烷性能[J]. 农业工程学报,2018,34(16):184−189. [HUANG K M, ZHAO L X, FENG J, et al. Improvement of methane production by anaerobic digestion of corn straw pretreated with composite microorganism[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(16):184−189. doi: 10.11975/j.issn.1002-6819.2018.16.024
    [36]
    刘霄. 高效降解玉米秸秆复合菌群的构建及其降解效果研究[D]. 哈尔滨: 东北农业大学, 2019.

    LIU X. Study on the construction and degradation effect of high-efficient degradation of corn straw complex bacteria[D]. Harbin: Northeast Agricultural University, 2019.
    [37]
    张悦, 季静, 关春峰, 等. 秸秆纤维素降解菌的筛选及其产酶特性研究[J]. 纤维素科学与技术,2018,26(4):28−38. [ZHANG Y, JI J, GUAN C F, et al. Screening of straw cellulose degrading bacteria and study on its enzyme producing characteristics[J]. Journal of Cellulose Science and Technology,2018,26(4):28−38.
    [38]
    于素素. 低温玉米秸秆降解菌的筛选及其复合菌系产酶条件优化[D]. 沈阳: 沈阳农业大学, 2019.

    YU S S. Screening of degradable bacteria from low temperature corn straw and optimization of enzyme production conditions of complex strains[D]. Shenyang: Shenyang Agricultural University, 2019.
    [39]
    王海滨, 韩立荣, 冯俊涛, 等. 高效纤维素降解菌的筛选及复合菌系的构建[J]. 农业生物技术学报,2015,23(4):421−431. [WANG H B, HAN L R, FENG J T, et al. Screening of highly effective cellulose-degrading bacteria and construction of complex strains[J]. Journal of Agricultural Biotechnology,2015,23(4):421−431. doi: 10.3969/j.issn.1674-7968.2015.04.001
    [40]
    王珊珊. 玉米秸秆高效降解菌的筛选及混合菌株降解能力测定[D]. 哈尔滨: 黑龙江大学, 2016.

    WANG S S. Screening of high efficiency degradation bacteria of corn straw and determination of degradation ability of mixed strain[D]. Harbin: Heilongjiang University, 2016.
    [41]
    张必周, 高聚林, 于晓芳, 等. 玉米秸秆低温降解菌的分离与鉴定及复配菌降解效果研究[J]. 玉米科学,2020,28(6):168−175. [ZHANG B Z, GAO J L, YU X F, et al. Isolation and identification of low temperature degrading bacteria from corn straw and study on the effect of compound bacteria[J]. Journal of Maize Science,2020,28(6):168−175.
    [42]
    宋颖琦, 刘睿倩, 杨谦, 等. 纤维素降解菌的筛选及其降解特性的研究[J]. 哈尔滨工业大学学报,2002,34(2):197−200. [SONG Y Q, LIU R Q, YANG Q, et al. Screening of cellulose degrading bacteria and its degradation characteristics[J]. Journal of Harbin Institute of Technology,2002,34(2):197−200. doi: 10.3321/j.issn:0367-6234.2002.02.013
    [43]
    张立霞. 纤维降解菌组合的筛选、优化及对玉米秸秆的降解效果[D]. 北京: 中国农业科学院, 2014.

    ZHANG L X. Screening and optimization of fiber degradation bacteria combination and the degradation effect of corn straw[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
    [44]
    段杰. 东北地区秸秆纤维素降解菌的筛选及高效降解菌系的构建[D]. 长春: 吉林农业大学, 2015.

    DUAN J. Screening of straw cellulose degrading bacteria in northeast China and construction of high efficient degrading strains[D]. Changchun: Jilin Agricultural University, 2015.
    [45]
    JAIN D, RAVINA, BHOJIYA A A, et al. Polyphasic characterization of plant growth promoting cellulose degrading bacteria isolated from organic manures[J]. Current Microbiology,2021,78(5):739−748.
    [46]
    ZHANG H, DONG S, LOU T, et al. Complete genome sequence unveiled cellulose degradation enzymes and secondary metabolic potentials in Streptomyces sp. CC0208[J]. Journal of Basic Microbiology,2019,59(3):267−276. doi: 10.1002/jobm.201800563
    [47]
    王晓涛, 魏佩玲, 胡波, 等. 纤维素降解酶研究进展[J]. 草食家畜,2019,196(3):19−24. [WANG X T, WEI P L, HU B, et al. Advances in cellulose degradation enzymes[J]. Grass-feeding Livestock,2019,196(3):19−24.
    [48]
    REESE E T, SIU R, LEVINSON H. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis[J]. Journal of Bacteriology,1950,59(4):485−497. doi: 10.1128/jb.59.4.485-497.1950
    [49]
    DIN N, DAMUDE H G, GILKES N R, et al. C1-CX revisited: Intramolecular synergism in a cellulase[J]. Proceedings of the National Academy of Sciences,1994,91(24):11383−11387. doi: 10.1073/pnas.91.24.11383
    [50]
    刘树立, 王华, 王春艳, 等. 纤维素酶分子结构及作用机理的研究进展[J]. 食品科技,2007,7(7):12−15. [LIU S L, WANG H, WANG C Y, et al. Progress in the molecular structure and action mechanism of cellulase[J]. Food Technology,2007,7(7):12−15. doi: 10.3969/j.issn.1005-9989.2007.07.004
    [51]
    HENRISSAT B, DRIGUEZ H, VIET C, et al. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose[J]. Nature Biotechnology,1985,3(8):722−726. doi: 10.1038/nbt0885-722
    [52]
    张俊, 许超, 张宇, 等. 纤维素酶降解机理的研究进展[J]. 华南理工大学学报(自然科学版),2019,47(9):121−130. [ZHANG J, XU C, ZHANG Y, et al. Research progress of cellulase degradation mechanism[J]. Journal of South China University of Technology (Natural Science Edition),2019,47(9):121−130.
    [53]
    YANG M, ZHAO J, LI X, et al. Comparative metagenomic discovery of the dynamic cellulose-degrading process from a synergistic cellulolytic microbiota[J]. Cellulose,2021,28(4):2105−2123. doi: 10.1007/s10570-020-03671-z
    [54]
    WOOD T M. Properties of cellulolytic enzyme systems[J]. Biochemical Society Transactions,1985,13(2):407−410. doi: 10.1042/bst0130407
    [55]
    QU M B, WATANABE-NAKAYAMA T, SUN S, et al. High-speed atomic force microscopy reveals factors affecting the processivity of chitinases during interfacial enzymatic hydrolysis of crystalline chitin[J]. ACS Catalysis,2020,10(22):13606−13615. doi: 10.1021/acscatal.0c02751
    [56]
    ZHANG Y H P, HIMMEL M E, MIELENZ J R. Outlook for cellulase improvement: Screening and selection strategies[J]. Biotechnology Advances,2006,24(5):452−481. doi: 10.1016/j.biotechadv.2006.03.003
    [57]
    HAMID M B A, ISLAM M M, DAS R. Cellulase biocatalysis: Key influencing factors and mode of action[J]. Cellulose,2015,22:2157−2182. doi: 10.1007/s10570-015-0672-5
    [58]
    VRSANSKA M. The cellobiohydrolase I from Trichoderma reesei QM 9414: Action on cello-oligosaccharides[J]. Carbohydrate Research,1992,227:19−27. doi: 10.1016/0008-6215(92)85058-8
    [59]
    SUGANO J , LINNAKOSKI R, HUHTINEN S, et al. Cellulolytic activity of brown-rot Antrodia snuosa at the initial stage of cellulose degradation[J]. Holzforschung,2019,73(7):673−680. doi: 10.1515/hf-2018-0145
    [60]
    COUGHLAN M P. The properties of fungal and bacterial cellulases with comment on their production and application[J]. Biotechnology and Genetic Engineering Reviews,1985,3:39−109. doi: 10.1080/02648725.1985.10647809
    [61]
    NURIKA I, SUHARTINI S, BARKER G C. Biotransformation of tropical lignocellulosic feedstock using the brown rot fungus Serpula lacrymans[J]. Waste and Biomass Valorization,2020,11(6):2689−2700. doi: 10.1007/s12649-019-00581-5
    [62]
    FRANCIS W. M. R. SCHWARZE. Wood decay under the microscope[J]. Fungal Biology Reviews,2007,21(4):133−170. doi: 10.1016/j.fbr.2007.09.001
    [63]
    PHADAGI R, SINGH S, HASHEMI H, et al. Understanding the role of dimethyl form amide as co-solvents in the dissolution of cellulose in ionic liquids: Experimental and theoretical approach[J]. Journal of Molecular Liquids,2021,328:115392. doi: 10.1016/j.molliq.2021.115392
    [64]
    TYAGI U, ANAND N. Facile depolymerization of microcrystalline cellulose in ionic liquid medium catalyzed by carbon materials as catalysts[J]. Current Research in Green and Sustainable Chemistry,2021,4(1):100068.
  • Related Articles

    [1]SUN Chengyuan, ZHANG Yuling, CHEN Qianru, LI Jiangping, LI Tao, WEI Yuxi, GAO Xiang. Research Progress on the Effects and Mechanisms of L-carnitine on Improving Metabolic Syndrome[J]. Science and Technology of Food Industry, 2023, 44(1): 475-484. DOI: 10.13386/j.issn1002-0306.2022030263
    [2]ZHAO Dianbo, WANG Shaodan, ZHENG Kaixi, XIANG Qisen, WANG Bohua, ZHANG Qifan. Synergistic Inactivation Effects and Mechanisms of Plasma-Activated Water Combined with Phenyllactic Acid against Escherichia coli O157:H7[J]. Science and Technology of Food Industry, 2022, 43(14): 138-143. DOI: 10.13386/j.issn1002-0306.2021110116
    [3]Qisen XIANG, Rong ZHANG, Guihong DU, Limin WANG, Aimin JIANG. Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium[J]. Science and Technology of Food Industry, 2021, 42(8): 138-143. DOI: 10.13386/j.issn1002-0306.2020080241
    [4]HE Wen-qi, WANG Ya-jun, YOU Wen-jing, GE Chun-hui, SHAO Yuan-zhi. Isolation and Identification of Soft Rot Pathogen in Postharvest Wax Apple,Screening of Its Antagonistic Strain and Prevention Mechanism[J]. Science and Technology of Food Industry, 2020, 41(7): 102-108. DOI: 10.13386/j.issn1002-0306.2020.07.018
    [5]ZOU Lin, FENG Feng-qin. Research Progress of Uric Acid-lowering Bioactive Compounds in Food and Their Mechanisms[J]. Science and Technology of Food Industry, 2019, 40(13): 352-357,364. DOI: 10.13386/j.issn1002-0306.2019.13.059
    [6]LU Jing-jing, WANG Na-na, JIAO Wen-shu, HUO Gui-cheng. The Mechanism and Research Progress of Probiotics in Relieving Obesity[J]. Science and Technology of Food Industry, 2019, 40(3): 296-299,306. DOI: 10.13386/j.issn1002-0306.2019.03.047
    [7]MA Huan-huan, LIN Yang, LV Xin-ran, SUN Meng-tong, BAI Feng-ling, LI Jian-rong, SONG Qiang. Screening and inhibition mechanism of lactic acid bacteria against Aspergillus niger using 96-well microtiter plates[J]. Science and Technology of Food Industry, 2017, (12): 171-175. DOI: 10.13386/j.issn1002-0306.2017.12.031
    [8]ZHOU Ting-ting, CAO Shao-qian, LI Si-si, QI Xiang-yang. Advances in oxidation deterioration mechanisms of oils and fats under non-thermal treatment[J]. Science and Technology of Food Industry, 2017, (10): 385-388. DOI: 10.13386/j.issn1002-0306.2017.10.066
    [9]ZHANG Hong, ZHOU Ying-yu, LU Wei-hong, CHEN Cui-lin, GAO Xin, SHAN Shan. Overview on anti-tumor mechanism and effect of diosmin[J]. Science and Technology of Food Industry, 2016, (24): 376-379. DOI: 10.13386/j.issn1002-0306.2016.24.065
    [10]HUANG Run-ting, LI Zong-jun, WU Jing. Research progress in the mechanisms of lowering cholesterol of several common kinds of microorganisms[J]. Science and Technology of Food Industry, 2015, (06): 385-390. DOI: 10.13386/j.issn1002-0306.2015.06.075
  • Cited by

    Periodical cited type(5)

    1. 鲁彤,赵微,崔美林,王佳丽,张秀红. 利用分子对接分析橙色嗜热子囊菌QH-1酯酶的酯化特性. 中国酿造. 2025(01): 85-91 .
    2. 麻静静,李惠源,高文静,韩英,贾丽艳. 酿酒功能菌的基因组测序及基因功能注释. 中国食品学报. 2024(05): 214-222 .
    3. 龚雯,罗小叶,何旭丽,李家敏,邱树毅. 酱香大曲中产香酵母的筛选鉴定及特性分析. 中国酿造. 2024(08): 24-30 .
    4. 朱俊颖,夏芊芊,甘晋铭,余登洋,丁保坤,陈茂彬,张玉. 高产酯化酶红曲霉的筛选、鉴定及其产酶条件优化. 中国酿造. 2024(12): 103-109 .
    5. 赵妍,陈娟,袁倩,王子卉,朱小辉,郝征红,毕文慧,任长博,孟维国. 产嗜热酯酶菌株的筛选、鉴定及发酵特性研究. 中国果菜. 2023(06): 22-27 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (2815) PDF downloads (272) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return