Citation: | LI Jing, LI Mingyuan, WANG Jilian, et al. Research Progress on Microbial Degradation of Cellulose[J]. Science and Technology of Food Industry, 2022, 43(9): 396−403. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040146. |
[1] |
KARGAR F, MORTAZAVI M, MALEKI M, et al. Isolation, identification and in silico study of native cellulase producing bacteria[J]. Current Proteomics,2021,18(1):3−11. doi: 10.2174/1570164617666191127142035
|
[2] |
SAJID M S, JABEEN F, HUSSAIN D, et al. Boronic acid functionalized fibrous cellulose for the selective enrichment of glycopeptides[J]. Journal of Separation Science,2020,43(7):1348−1355. doi: 10.1002/jssc.201900983
|
[3] |
RAMEZANI N, SAIN M. Non-catalytic green solvent lignin isolation process from wheat straw and the structural analysis[J]. Renewable Energy,2019,140:292−303. doi: 10.1016/j.renene.2019.03.026
|
[4] |
BARBOSA F C, SILVELLO M A, GOLDBECK R. Cellulase and oxidative enzymes: New approaches, challenges and perspectives on cellulose degradation for bioethanol production[J]. Biotechnology Letters,2020,42(6):875−884. doi: 10.1007/s10529-020-02875-4
|
[5] |
ISLAM S, CHEN I, SISLER J, et al. Cellulose nanocrystal (CNC)-inorganic hybrid systems: Synthesis, properties and applications[J]. Journal of Materials Chemistry B,2018,6(6):864−883. doi: 10.1039/C7TB03016A
|
[6] |
马泽林, 刘家亨, 黄序, 等. 微生物利用木质纤维素的研究进展[J]. 中国生物工程杂志,2017,37(6):124−133. [MA Z L, LIU J H, HUANG X, et al. Advances in microbial utilization of lignocellulose[J]. Chinese Academy of Sciences,2017,37(6):124−133.
|
[7] |
PAN Z L, YANG H, SHI J X, et al. Screening identification and characterization of cellulose degrading bacteria[J]. Environmental Science and Management,2019,44(4):102−105.
|
[8] |
SHEN F, ZHONG B, WANG Y, et al. Cellulolytic microflora pretreatment increases the efficiency of anaerobic co-digestion of rice straw and pig manure[J]. BioEnergy Research,2019,12(3):703−713. doi: 10.1007/s12155-019-10013-w
|
[9] |
陈露露. 玉米秸秆降解菌的分离鉴定及其降解性能研究[D]. 哈尔滨: 黑龙江科技大学, 2019.
CHEN L L. Isolation, identification and degradation performance of corn straw decomposed bacteria[D]. Harbin: Heilongjiang University of Science and Technology, 2019.
|
[10] |
SUI M, RONG J, ZHANG Y, et al. Screening of cellulose degrading bacteria and construction of complex microflora[J]. IOP Conference Series Earth and Environmental Science,2021,632:032021. doi: 10.1088/1755-1315/632/3/032021
|
[11] |
YU H J, GUO X L. Screening of straw-degrading bacteria and study on their cellulose-degrading performances[J]. Biotechnology Bulletin,2019,35(2):58.
|
[12] |
李建树, 孙丽坤, 韩向敏, 等. 高温纤维素降解微生物的筛选、鉴定及其酶活力测定[J]. 甘肃农业大学学报,2020,55(3):29−37. [LI J S, SUN L K, HAN X M, et al. Screening, identification and determination of enzymatic activity of microorganisms degraded by high temperature cellulose[J]. Journal of Gansu Agricultural University,2020,55(3):29−37.
|
[13] |
张名爱, 王宝维. 鹅源高活力纤维素分解菌的分离鉴定[J]. 中国家禽,2012,34(5):12−15. [ZHANG M A, WANG B W. Isolation and identification of highly active fibrin dissolving bacteria from goose sources[J]. China Poultry,2012,34(5):12−15. doi: 10.3969/j.issn.1004-6364.2012.05.004
|
[14] |
杨娜, 何鑫, 杜春梅. 一株纤维素降解菌的筛选与鉴定[J]. 中国农学通报,2021,37(17):26−31. [YANG N, HE X, DU C M. Screening and identification of a cellulose degradation bacterium[J]. Chinese Agricultural Bulletin,2021,37(17):26−31. doi: 10.11924/j.issn.1000-6850.casb2021-0131
|
[15] |
单建荣, 全鑫, 朱用哲, 等. 一株低温纤维素降解菌的筛选与产酶条件优化[J]. 生态学杂志,2021,40(4):1128−1136. [SHAN J R, Q X, ZHU Y Z, et al. Screening and optimization of enzyme conditions of a cryogen cellulose degradation bacterium[J]. Journal of Ecology,2021,40(4):1128−1136.
|
[16] |
李灵灵, 王敬红, 赵铎, 等. 木质素降解菌BYL-7的筛选及降解条件优化[J]. 微生物学通报,2020,47(12):4059−4071. [LI L L, WANG J H, ZHAO D, et al. Optimizing the screening and degradation conditions of lignin degradation bacteria BYL-7[J]. Microbiology Bulletin,2020,47(12):4059−4071.
|
[17] |
刘晓飞, 侯艳, 马京求, 等. 降解玉米芯木质纤维素放线菌的筛选与发酵条件优化[J]. 农业机械学报,2020,51(11):329−337. [LIU X F, HOU Y, MA J Q, et al. Efficient degradation and optimization of fermentation conditions of actinomycetes from corn cob[J]. Journal of Agricultural Machinery,2020,51(11):329−337. doi: 10.6041/j.issn.1000-1298.2020.11.036
|
[18] |
刘心吾, 张威, 马玲玲, 等. 耐高温木质纤维素降解菌株的分离筛选、鉴定及降解工艺的研究[J]. 中国农学通报,2020,36(21):118−125. [LIU X W, ZHANG W, MA L L, et al. Study on separation, identification and degradation of high temperature-resistant lignocellulose degradation strains[J]. China Agricultural Science Bulletin,2020,36(21):118−125.
|
[19] |
梅金飞, 刚利萍, 余梅霞, 等. 烟草秸秆废弃物中纤维素降解菌的筛选、鉴定及产酶条件优化[J]. 烟草科技,2020,53(8):15−23. [MEI J F, GANG L P, YU M X, et al. Screening, identification and optimization of enzyme conditions of cellulose bacteria in tobacco straw waste[J]. Tobacco Technology,2020,53(8):15−23.
|
[20] |
ZHOU J Q, QIU Z P, HAN Y P, et al. Screening of a cellulose-degrading strain and its enzyme-producing conditions[J]. Journal of Environmental Engineering,2010,4(3):705−708.
|
[21] |
冯骏, 姚达行, 李晨, 等. 高效低成本纤维素酶诱导物的制备、筛选及应用[J]. 基因组学与应用生物学,2017,36(6):2561−2568. [FENG J, YAO D X, LI C, et al. Preparation, screening and application of high efficiency and low cost cellulase inducers[J]. Genomics and Applied Biology,2017,36(6):2561−2568.
|
[22] |
孟建宇, 李蘅, 樊兆阳, 等. 低温纤维素降解菌的分离与鉴定[J]. 应用与环境生物学报,2014,20(1):152−156. [MENG J Y, LI H, FAN Z Y, et al. Isolation and identification of low temperature cellulose degrading bacteria[J]. Chinese Journal of Applied and Environmental Biology,2014,20(1):152−156.
|
[23] |
LU J, YANG Z M, XU W, et al. Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk[J]. Journal of Environmental Sciences,2019,78(4):120−128.
|
[24] |
沈琦, 孙宏, 王新, 等. 猪粪中嗜热纤维素降解菌的筛选及其除臭特性研究[J]. 中国畜牧杂志,2020,56(10):162−166. [SHEN Q, SUN H, WANG X, et al. Study on the screening and deodorization characteristics of thermophilic cellulose degradation bacteria in pig manure[J]. Chinese Livestock Journal,2020,56(10):162−166.
|
[25] |
LI X, HAN C, LI W, et al. Insights into the cellulose degradation mechanism of the thermophilic fungus Chaetomium thermophilum based on integrated functional omics[J]. Biotechnology for Biofuels,2020,13(1):1−8. doi: 10.1186/s13068-019-1642-1
|
[26] |
GILLIGAN W, REESE E T. Evidence for multiple components in microbial cellulases[J]. Canadian Journal of Microbiology,1954,1(2):90−107. doi: 10.1139/m55-013
|
[27] |
HORN S J, VAAJE-KOLSTAD G, WESTERENG B, et al. Novel enzymes for the degradation of cellulose[J]. Biotechnology for Biofuels,2012,5(1):45−45. doi: 10.1186/1754-6834-5-45
|
[28] |
CHEN X, CHENG W, LI S, et al. The “quality” and “quantity” of microbial species drive the degradation of cellulose during composting[J]. Bioresource Technology, 2021, 320 (Pt B): 124425.
|
[29] |
崔宗均, 李美丹, 朴哲. 一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J]. 环境科学,2002,23(3):36−39. [CUI Z J, LI M D, PU Z. Screening and function of a group of highly stable cellulose decomposition composite MC1[J]. Environmental Sciences,2002,23(3):36−39. doi: 10.3321/j.issn:0250-3301.2002.03.007
|
[30] |
孟建宇, 杨帆, 冀锦华, 等. 大兴安岭森林土壤中纤维素降解真菌的分离及产酶条件优化[J]. 黑龙江畜牧兽医,2020,17:108−111, 120, 171. [MENG J Y, YANG F, JI J H, et al. Isolation and optimization of cellulose degrading fungi in Greater Hinggan Mountains[J]. Heilongjiang Animal Husbandry and Veterinary,2020,17:108−111, 120, 171.
|
[31] |
王彦伟, 阮志勇, 江旭, 等. 一株耐受糠醛的纤维素降解菌Bacillus siamensis BREC-11的分离与鉴定[J]. 应用与环境生物学报,2018,24(4):889−893. [WANG Y W, RUAN Z Y, JIANG X, et al. Isolation and identification of Bacillus siamensis BREC-11, a cellulose degradation bacterium resistant to furfuraldehyde[J]. Application and Environmental Biology,2018,24(4):889−893.
|
[32] |
SUKMAWATI D, DELLANERRA D, RISANDI A. Screening the capabilities of Indonesian indigenous mold in producing cellulase enzyme[J]. IOP Conference,2018,434:012125. doi: 10.1088/1757-899X/434/1/012125
|
[33] |
SRIKANDACE Y, ANDAYANI D, KARINA M. Preliminary study of the degradation of biocellulose based film using soil fungi Aspergillus unguis TP3 and Paecilomyces marquandii TP4 producing cellulose[J]. IOP Conference Series: Earth and Environmental Science,2019,277(1):012001. doi: 10.1088/1755-1315/277/1/012001
|
[34] |
SHANG T, QUANHONG L I, DENG S. Screening and isolation of highly efficient cellulose-degrading microorganisms and construction of complex microbial system[J]. Agricultural Science and Technology,2015,16(4):639−652.
|
[35] |
黄开明, 赵立欣, 冯晶, 等. 复合微生物预处理玉米秸秆提高其厌氧消化产甲烷性能[J]. 农业工程学报,2018,34(16):184−189. [HUANG K M, ZHAO L X, FENG J, et al. Improvement of methane production by anaerobic digestion of corn straw pretreated with composite microorganism[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(16):184−189. doi: 10.11975/j.issn.1002-6819.2018.16.024
|
[36] |
刘霄. 高效降解玉米秸秆复合菌群的构建及其降解效果研究[D]. 哈尔滨: 东北农业大学, 2019.
LIU X. Study on the construction and degradation effect of high-efficient degradation of corn straw complex bacteria[D]. Harbin: Northeast Agricultural University, 2019.
|
[37] |
张悦, 季静, 关春峰, 等. 秸秆纤维素降解菌的筛选及其产酶特性研究[J]. 纤维素科学与技术,2018,26(4):28−38. [ZHANG Y, JI J, GUAN C F, et al. Screening of straw cellulose degrading bacteria and study on its enzyme producing characteristics[J]. Journal of Cellulose Science and Technology,2018,26(4):28−38.
|
[38] |
于素素. 低温玉米秸秆降解菌的筛选及其复合菌系产酶条件优化[D]. 沈阳: 沈阳农业大学, 2019.
YU S S. Screening of degradable bacteria from low temperature corn straw and optimization of enzyme production conditions of complex strains[D]. Shenyang: Shenyang Agricultural University, 2019.
|
[39] |
王海滨, 韩立荣, 冯俊涛, 等. 高效纤维素降解菌的筛选及复合菌系的构建[J]. 农业生物技术学报,2015,23(4):421−431. [WANG H B, HAN L R, FENG J T, et al. Screening of highly effective cellulose-degrading bacteria and construction of complex strains[J]. Journal of Agricultural Biotechnology,2015,23(4):421−431. doi: 10.3969/j.issn.1674-7968.2015.04.001
|
[40] |
王珊珊. 玉米秸秆高效降解菌的筛选及混合菌株降解能力测定[D]. 哈尔滨: 黑龙江大学, 2016.
WANG S S. Screening of high efficiency degradation bacteria of corn straw and determination of degradation ability of mixed strain[D]. Harbin: Heilongjiang University, 2016.
|
[41] |
张必周, 高聚林, 于晓芳, 等. 玉米秸秆低温降解菌的分离与鉴定及复配菌降解效果研究[J]. 玉米科学,2020,28(6):168−175. [ZHANG B Z, GAO J L, YU X F, et al. Isolation and identification of low temperature degrading bacteria from corn straw and study on the effect of compound bacteria[J]. Journal of Maize Science,2020,28(6):168−175.
|
[42] |
宋颖琦, 刘睿倩, 杨谦, 等. 纤维素降解菌的筛选及其降解特性的研究[J]. 哈尔滨工业大学学报,2002,34(2):197−200. [SONG Y Q, LIU R Q, YANG Q, et al. Screening of cellulose degrading bacteria and its degradation characteristics[J]. Journal of Harbin Institute of Technology,2002,34(2):197−200. doi: 10.3321/j.issn:0367-6234.2002.02.013
|
[43] |
张立霞. 纤维降解菌组合的筛选、优化及对玉米秸秆的降解效果[D]. 北京: 中国农业科学院, 2014.
ZHANG L X. Screening and optimization of fiber degradation bacteria combination and the degradation effect of corn straw[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
|
[44] |
段杰. 东北地区秸秆纤维素降解菌的筛选及高效降解菌系的构建[D]. 长春: 吉林农业大学, 2015.
DUAN J. Screening of straw cellulose degrading bacteria in northeast China and construction of high efficient degrading strains[D]. Changchun: Jilin Agricultural University, 2015.
|
[45] |
JAIN D, RAVINA, BHOJIYA A A, et al. Polyphasic characterization of plant growth promoting cellulose degrading bacteria isolated from organic manures[J]. Current Microbiology,2021,78(5):739−748.
|
[46] |
ZHANG H, DONG S, LOU T, et al. Complete genome sequence unveiled cellulose degradation enzymes and secondary metabolic potentials in Streptomyces sp. CC0208[J]. Journal of Basic Microbiology,2019,59(3):267−276. doi: 10.1002/jobm.201800563
|
[47] |
王晓涛, 魏佩玲, 胡波, 等. 纤维素降解酶研究进展[J]. 草食家畜,2019,196(3):19−24. [WANG X T, WEI P L, HU B, et al. Advances in cellulose degradation enzymes[J]. Grass-feeding Livestock,2019,196(3):19−24.
|
[48] |
REESE E T, SIU R, LEVINSON H. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis[J]. Journal of Bacteriology,1950,59(4):485−497. doi: 10.1128/jb.59.4.485-497.1950
|
[49] |
DIN N, DAMUDE H G, GILKES N R, et al. C1-CX revisited: Intramolecular synergism in a cellulase[J]. Proceedings of the National Academy of Sciences,1994,91(24):11383−11387. doi: 10.1073/pnas.91.24.11383
|
[50] |
刘树立, 王华, 王春艳, 等. 纤维素酶分子结构及作用机理的研究进展[J]. 食品科技,2007,7(7):12−15. [LIU S L, WANG H, WANG C Y, et al. Progress in the molecular structure and action mechanism of cellulase[J]. Food Technology,2007,7(7):12−15. doi: 10.3969/j.issn.1005-9989.2007.07.004
|
[51] |
HENRISSAT B, DRIGUEZ H, VIET C, et al. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose[J]. Nature Biotechnology,1985,3(8):722−726. doi: 10.1038/nbt0885-722
|
[52] |
张俊, 许超, 张宇, 等. 纤维素酶降解机理的研究进展[J]. 华南理工大学学报(自然科学版),2019,47(9):121−130. [ZHANG J, XU C, ZHANG Y, et al. Research progress of cellulase degradation mechanism[J]. Journal of South China University of Technology (Natural Science Edition),2019,47(9):121−130.
|
[53] |
YANG M, ZHAO J, LI X, et al. Comparative metagenomic discovery of the dynamic cellulose-degrading process from a synergistic cellulolytic microbiota[J]. Cellulose,2021,28(4):2105−2123. doi: 10.1007/s10570-020-03671-z
|
[54] |
WOOD T M. Properties of cellulolytic enzyme systems[J]. Biochemical Society Transactions,1985,13(2):407−410. doi: 10.1042/bst0130407
|
[55] |
QU M B, WATANABE-NAKAYAMA T, SUN S, et al. High-speed atomic force microscopy reveals factors affecting the processivity of chitinases during interfacial enzymatic hydrolysis of crystalline chitin[J]. ACS Catalysis,2020,10(22):13606−13615. doi: 10.1021/acscatal.0c02751
|
[56] |
ZHANG Y H P, HIMMEL M E, MIELENZ J R. Outlook for cellulase improvement: Screening and selection strategies[J]. Biotechnology Advances,2006,24(5):452−481. doi: 10.1016/j.biotechadv.2006.03.003
|
[57] |
HAMID M B A, ISLAM M M, DAS R. Cellulase biocatalysis: Key influencing factors and mode of action[J]. Cellulose,2015,22:2157−2182. doi: 10.1007/s10570-015-0672-5
|
[58] |
VRSANSKA M. The cellobiohydrolase I from Trichoderma reesei QM 9414: Action on cello-oligosaccharides[J]. Carbohydrate Research,1992,227:19−27. doi: 10.1016/0008-6215(92)85058-8
|
[59] |
SUGANO J , LINNAKOSKI R, HUHTINEN S, et al. Cellulolytic activity of brown-rot Antrodia snuosa at the initial stage of cellulose degradation[J]. Holzforschung,2019,73(7):673−680. doi: 10.1515/hf-2018-0145
|
[60] |
COUGHLAN M P. The properties of fungal and bacterial cellulases with comment on their production and application[J]. Biotechnology and Genetic Engineering Reviews,1985,3:39−109. doi: 10.1080/02648725.1985.10647809
|
[61] |
NURIKA I, SUHARTINI S, BARKER G C. Biotransformation of tropical lignocellulosic feedstock using the brown rot fungus Serpula lacrymans[J]. Waste and Biomass Valorization,2020,11(6):2689−2700. doi: 10.1007/s12649-019-00581-5
|
[62] |
FRANCIS W. M. R. SCHWARZE. Wood decay under the microscope[J]. Fungal Biology Reviews,2007,21(4):133−170. doi: 10.1016/j.fbr.2007.09.001
|
[63] |
PHADAGI R, SINGH S, HASHEMI H, et al. Understanding the role of dimethyl form amide as co-solvents in the dissolution of cellulose in ionic liquids: Experimental and theoretical approach[J]. Journal of Molecular Liquids,2021,328:115392. doi: 10.1016/j.molliq.2021.115392
|
[64] |
TYAGI U, ANAND N. Facile depolymerization of microcrystalline cellulose in ionic liquid medium catalyzed by carbon materials as catalysts[J]. Current Research in Green and Sustainable Chemistry,2021,4(1):100068.
|
[1] | SUN Chengyuan, ZHANG Yuling, CHEN Qianru, LI Jiangping, LI Tao, WEI Yuxi, GAO Xiang. Research Progress on the Effects and Mechanisms of L-carnitine on Improving Metabolic Syndrome[J]. Science and Technology of Food Industry, 2023, 44(1): 475-484. DOI: 10.13386/j.issn1002-0306.2022030263 |
[2] | ZHAO Dianbo, WANG Shaodan, ZHENG Kaixi, XIANG Qisen, WANG Bohua, ZHANG Qifan. Synergistic Inactivation Effects and Mechanisms of Plasma-Activated Water Combined with Phenyllactic Acid against Escherichia coli O157:H7[J]. Science and Technology of Food Industry, 2022, 43(14): 138-143. DOI: 10.13386/j.issn1002-0306.2021110116 |
[3] | Qisen XIANG, Rong ZHANG, Guihong DU, Limin WANG, Aimin JIANG. Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium[J]. Science and Technology of Food Industry, 2021, 42(8): 138-143. DOI: 10.13386/j.issn1002-0306.2020080241 |
[4] | HE Wen-qi, WANG Ya-jun, YOU Wen-jing, GE Chun-hui, SHAO Yuan-zhi. Isolation and Identification of Soft Rot Pathogen in Postharvest Wax Apple,Screening of Its Antagonistic Strain and Prevention Mechanism[J]. Science and Technology of Food Industry, 2020, 41(7): 102-108. DOI: 10.13386/j.issn1002-0306.2020.07.018 |
[5] | ZOU Lin, FENG Feng-qin. Research Progress of Uric Acid-lowering Bioactive Compounds in Food and Their Mechanisms[J]. Science and Technology of Food Industry, 2019, 40(13): 352-357,364. DOI: 10.13386/j.issn1002-0306.2019.13.059 |
[6] | LU Jing-jing, WANG Na-na, JIAO Wen-shu, HUO Gui-cheng. The Mechanism and Research Progress of Probiotics in Relieving Obesity[J]. Science and Technology of Food Industry, 2019, 40(3): 296-299,306. DOI: 10.13386/j.issn1002-0306.2019.03.047 |
[7] | MA Huan-huan, LIN Yang, LV Xin-ran, SUN Meng-tong, BAI Feng-ling, LI Jian-rong, SONG Qiang. Screening and inhibition mechanism of lactic acid bacteria against Aspergillus niger using 96-well microtiter plates[J]. Science and Technology of Food Industry, 2017, (12): 171-175. DOI: 10.13386/j.issn1002-0306.2017.12.031 |
[8] | ZHOU Ting-ting, CAO Shao-qian, LI Si-si, QI Xiang-yang. Advances in oxidation deterioration mechanisms of oils and fats under non-thermal treatment[J]. Science and Technology of Food Industry, 2017, (10): 385-388. DOI: 10.13386/j.issn1002-0306.2017.10.066 |
[9] | ZHANG Hong, ZHOU Ying-yu, LU Wei-hong, CHEN Cui-lin, GAO Xin, SHAN Shan. Overview on anti-tumor mechanism and effect of diosmin[J]. Science and Technology of Food Industry, 2016, (24): 376-379. DOI: 10.13386/j.issn1002-0306.2016.24.065 |
[10] | HUANG Run-ting, LI Zong-jun, WU Jing. Research progress in the mechanisms of lowering cholesterol of several common kinds of microorganisms[J]. Science and Technology of Food Industry, 2015, (06): 385-390. DOI: 10.13386/j.issn1002-0306.2015.06.075 |