LIN Jiexin, WANG Pengjie, JIN Shan, et al. Comparative Analysis of Black Tea Metabolites from Different Origins Based on Extensively Targeted Metabolomics[J]. Science and Technology of Food Industry, 2022, 43(2): 9−19. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040110.
Citation: LIN Jiexin, WANG Pengjie, JIN Shan, et al. Comparative Analysis of Black Tea Metabolites from Different Origins Based on Extensively Targeted Metabolomics[J]. Science and Technology of Food Industry, 2022, 43(2): 9−19. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040110.

Comparative Analysis of Black Tea Metabolites from Different Origins Based on Extensively Targeted Metabolomics

More Information
  • Received Date: April 11, 2021
  • Available Online: November 13, 2021
  • In order to explore the origin differences of black tea metabolites, the metabolites in black tea produced in Fu 'an and Youxi of Fujian province were compared and analyzed by using sensory evaluation method and extensive targeting metabolomic determination method of ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). The results showed that, Fu'an black tea mainly tasted of “mellow and soft”, while Youxi black tea of “mellow and sweet”. A total of 937 metabolites including of flavonoids, phenolic acids, lipids, organic acids, amino acids and their derivatives were identified by metabonomics in the black tea of the two regions, through the principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) could significantly distinguish different producing area of black tea, and identified 410 species of metabolites with significant difference. The relative content of 291 different metabolites in Youxi black tea was higher than that of Fu 'an black tea, among which Astragalin, EC, L-glutamine, L-aspartic acid, L-lysine, L-tryptophan, L-glutamic acid, chlorogenic acid, phenethylamine, vitexin-2''-O-rhamnoside might have important contributions to the formation of different taste and quality of black tea from the two regions. Metabolic pathway analysis showed that the metabolism levels of amino acids and flavonoids of black tea between the two places were significantly different, which might be the reason for the difference in the taste and quality of black tea between the two places. The research would provide a theoretical basis for the identification of tea origin.
  • [1]
    廖泽明, 黄雅雯, 郭雅玲. 福建红茶产业优势与发展思考[J]. 福建茶叶,2017,39(3):1−3. [LIAO Z M, HUANG Y W, GUO Y L. The advantages and development thinking of Fujian black tea industry[J]. Fujian Tea,2017,39(3):1−3. doi: 10.3969/j.issn.1005-2291.2017.03.001
    [2]
    周阳, 肖文军, 林玲, 等. 红茶及其发花红砖茶对高血糖模型小鼠的降血糖作用[J]. 茶叶科学,2019,39(4):415−424. [ZHOU Y, XIAO W J, LIN L, et al. Hypoglycemic effects of black tea and Fungus fermented black brick tea on hyperglycemic model mice[J]. Journal of Tea Science,2019,39(4):415−424. doi: 10.3969/j.issn.1000-369X.2019.04.006
    [3]
    乔小燕, 李波, 何梓卿, 等. 黄化英红九号红茶体外抗氧化活性分析[J]. 农产品质量与安全,2018,5:85−90. [QIAO X Y, LI B, HE Z Q, et al. Analysis of antioxidant activity of Huanghuayinghong No. 9 black tea in vitro[J]. Quality and Safety of Agro-Products,2018,5:85−90. doi: 10.3969/j.issn.1674-8255.2018.04.016
    [4]
    SUSMIT M, TISHYA S, SHIVRAJ N, 等. 绿茶和红茶多酚类化合物的抗病毒活性在新型冠状病毒肺炎预防和治疗中的应用[J]. 中国茶叶,2021,43(1):1−9. [SUSMIT M, TISHYA S, SHIVRAJ N, et al. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review[J]. China Tea,2021,43(1):1−9. doi: 10.3969/j.issn.1000-3150.2021.01.001
    [5]
    TAN Q, PENG L, HUANG Y, et al. Structure-activity relationship analysis on antioxidant and anticancer actions of theaflavins on human colon cancer cells[J]. Journal of agricultural and food chemistry,2018,67(1):159−170.
    [6]
    FU G, WANG H, CAI Y, et al. Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa beta-related pathway in rats[J]. Drug Des Devel Ther,2018,12:1609−1619. doi: 10.2147/DDDT.S164324
    [7]
    王淑燕, 赵峰, 饶耿慧, 等. 基于电子鼻和ATD-GC-MS技术分析茉莉花茶香气成分的产地差异[J]. 食品工业科技,2021,42(15):234−239. [WANG S Y, ZHAO F, RAO G H, et al. Origin Difference Analysis of Aroma Components in Jasmine Tea Based on Electronic Nose and ATD-GC-MS[J]. Science and Technology of Food Industry,2021,42(15):234−239.
    [8]
    CHENG L Z, YANG Q Q, CHEN Z Y, et al. Distinct changes of metabolic profile and sensory quality during Qingzhuan tea processing revealed by LC-MS-based metabolomics[J]. Journal of Agricultural and Food Chemistry,2020,68(17):4955−4965. doi: 10.1021/acs.jafc.0c00581
    [9]
    LIU H L, ZENG Y T, ZHAO X, et al. Improved geographical origin discrimination for tea using ICP-MS and ICP-OES techniques in combination with chemometric approach[J]. Journal of the Science of Food and Agriculture,2020,100(8):3507−3516. doi: 10.1002/jsfa.10392
    [10]
    王子浩, 刘洋, 李明玺, 等. 基于近红外光谱技术的信阳毛尖产地判别[J]. 分子植物育种,2019,17(21):7161−7166. [WANG Z H, LIU Y, LI M X, et al. Geographical origin discriminant of Xinyang maojian tea by near infrared spectroscopy[J]. Molecular Plant Breeding,2019,17(21):7161−7166.
    [11]
    杨纯, 颜鸿飞, 吕小园, 等. 元素指纹图谱用于安化黑茶的原产地判别[J]. 食品科学,2020,41(16):286−291. [YANG C, YAN H F, LV X Y, et al. Geographical origin discrimination of Anhua dark tea by elemental fingerprint[J]. Food Science,2020,41(16):286−291. doi: 10.7506/spkx1002-6630-20190304-033
    [12]
    WU X, LIU Y, GUO J Q, et al. Differentiating pu-erh raw tea from different geographical origins by H-NMR and U-HPLC/Q-TOF-MS combined with chemometrics[J]. Journal of Food Science,2021,86(3):779−791. doi: 10.1111/1750-3841.15624
    [13]
    彭云, 李果, 刘学艳, 等. 不同产地红茶香气品质的SPME/GC-MS分析[J]. 食品工业科技,2021,42(9):237−244. [PENG Y, LI G, LIU X Y, et al. SPME/GC-MS analysis of aroma quality of black tea from different producing areas[J]. Science and Technology of Food Industry,2021,42(9):237−244.
    [14]
    赵恬欢. 不同地区红茶矿质元素分析及产地特征研究[D]. 福州: 福建农林大学, 2015.

    ZHAO T H. Analysis of mineral elements content of black from different origins and their origin characteristics[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015.
    [15]
    宋楚君, 范方媛, 龚淑英, 等. 不同产地红茶的滋味特征及主要贡献物质[J]. 中国农业科学,2020,53(2):383−394. [SONG C J, FANG F Y, GONG S Y, et al. Taste characteristic and main contributing compounds of different origin black tea[J]. Scientia Agricultura Sinica,2020,53(2):383−394. doi: 10.3864/j.issn.0578-1752.2020.02.012
    [16]
    戴宇樵, 吕才有. 代谢组学技术在茶学中的应用研究进展[J]. 江苏农业科学,2019,47(2):24−28. [DAI Y Q, LV C Y. Advances in the application of metabonomics in tea science[J]. Jiangsu Agricultural Sciences,2019,47(2):24−28.
    [17]
    王春波, 吕辉, 韦玲冬, 等. 不同产地都匀毛尖茶代谢组学研究[J]. 河南农业大学学报,2021,55(3):422−428. [WANG C B, LV H, WEI L D, et al. Metabolomics study of Dunyun maojian tea from different geographical origin

    J]. Journal of Henan Agricultural University,2021,55(3):422−428.
    [18]
    CHEN W, GONG L, GUO Z L, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics[J]. Molecular Plant,2013,6(6):1769−1780. doi: 10.1093/mp/sst080
    [19]
    SCHARBERT S, HOLZMANN N, HOFMANN T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse[J]. Journal of Agricultural and Food Chemistry,2004,52(11):3498−3508. doi: 10.1021/jf049802u
    [20]
    YU Z M, YANG Z Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function[J]. Critical Reviews in Food Science and Nutrition,2020,60(5):844−858. doi: 10.1080/10408398.2018.1552245
    [21]
    LIU J, ZHANG Q, LIU M, et al. Metabolomic analyses reveal distinct change of metabolites and quality of green tea during the short duration of a single spring season.[J]. Journal of Agricultural and Food Chemistry,2016,64(16):3302−3309. doi: 10.1021/acs.jafc.6b00404
    [22]
    杨晨, 戴伟东, 吕美玲, 等. 基于UHPLC-Q-TOF/MS的不同产地普洱生茶化学成分差异研究[J]. 茶叶科学,2017,37(6):605−615. [YANG C, DAI W D, LV M L, et al. Study on the chemical constituents of Pu-erh teas from different areas by UHPLC-Q-TOF/MS[J]. Journal of Tea Science,2017,37(6):605−615. doi: 10.3969/j.issn.1000-369X.2017.06.007
    [23]
    岳翠男, 秦丹丹, 蔡海兰, 等. 赣北工夫红茶滋味特征及关键化合物分析[J]. 食品与发酵工业,2021,47(2):260−267. [YUE Q N, QIN D D, CAI H L, et al. Taste characteristics and key compounds analysis of Congou black tea in northern Jiangxi province[J]. Food and Fermentation Industries,2021,47(2):260−267.
    [24]
    WU T, ZOU R, PU D, et al. Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercropping with Chinese chestnut[J]. BMC Plant Biology,2021,21(1):1−17. doi: 10.1186/s12870-020-02777-7
    [25]
    SCHARBERT S, HOFMANN T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments[J]. Journal of Agricultural and Food Chemistry,2005,53(13):5377−5384. doi: 10.1021/jf050294d
    [26]
    LIAO J, WU X, XING Z, et al. γ-Aminobutyric acid (GABA) accumulation in tea (Camellia sinensis L. ) through the GABA shunt and polyamine degradation pathways under anoxia[J]. Journal of Agricultural and Food Chemistry,2017,65(14):3013−3018. doi: 10.1021/acs.jafc.7b00304
    [27]
    LEAN M E, HANKEY C R. Aspartame and its effects on health[J]. BMJ,2004,329(7469):755−756. doi: 10.1136/bmj.329.7469.755
    [28]
    TOMOYA M, HIDEO E. Improvement of the bitterness and astringency of green tea by sub-critical water extraction[J]. Japanese Society for Food Science and Technology,2013,19(3):471−478.
    [29]
    JI H G, LEE Y R, LEE M S, et al. Diverse metabolite variations in tea (Camellia sinensis L. ) leaves grown under various shade conditions revisited: A metabolomics study[J]. Journal of Agricultural and Food Chemistry,2018,66(8):1889−1897. doi: 10.1021/acs.jafc.7b04768
    [30]
    DAI W, QI D, YANG T, et al. Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry,2015,63(44):9869−9878. doi: 10.1021/acs.jafc.5b03967
    [31]
    李明超, 刘莹, 杨洋, 等. 紫娟茶主要化学成分及药理活性研究进展[J]. 食品安全质量检测学报,2019,10(8):2293−2299. [LI M C, LIU Y, YANG Y, et al. Research advance in chemical constituents and pharmacological activities of Zijuan tea[J]. Journal of Food Safety & Quality,2019,10(8):2293−2299. doi: 10.3969/j.issn.2095-0381.2019.08.032
  • Cited by

    Periodical cited type(24)

    1. 骆春萍,蔡树芸,黄雅瑜,林米妮,郑海龙,杨光乐,张怡评. 岩藻多糖制备工艺及其在护肤品中的应用进展. 香料香精化妆品. 2025(02): 23-28+110 .
    2. 刘松,刘红全,李慧敏,徐程浩,王燕姿,藏颖. 拟微绿球藻胞内多糖提取条件优化及其生物活性研究. 食品科技. 2024(03): 233-242 .
    3. 刘欣雨,胡蔚然,李铮凯,吉玮,倪潇. 藻胶实验室:澎湃荧光海. 大学化学. 2024(05): 396-404 .
    4. 沈康,郭瑞成,徐天旭,王伟华. DEAE-52纤维素柱层析纯化处理对西梅可溶性膳食纤维的影响. 食品与发酵工业. 2024(17): 209-217 .
    5. 张田,黄雨洋,刘琳琳,吕铭守,朱颖,孙冰玉,朱秀清. 多糖对高水分挤压植物蛋白肉结构及品质影响的研究进展. 食品科学. 2024(22): 341-350 .
    6. Changhui YAN,Mingxuan PAN,Lihua GENG,Quanbin ZHANG,Yadong HU,Jing WANG,Sujuan YE. A novel enzyme-assisted one-pot method for the extraction of fucoidan and alginate oligosaccharides from Lessonia trabeculata and their bioactivities. Journal of Oceanology and Limnology. 2024(06): 1998-2012 .
    7. 唐天城,朱本伟,姚忠,孙芸,熊强. 石莼多糖及其寡糖结构、制备及活性的研究进展. 现代食品科技. 2023(05): 340-353 .
    8. 唐翠娥,周培源,刘延照,李艳. 基于原子力显微镜研究黄原胶分子结构的云母片处理方法优化. 食品工业科技. 2023(14): 60-66 . 本站查看
    9. 邱智超,勾宇春,张志鹏,王宗抗,孟品品,周进,姜玥璐. 藻类资源在农业种植业中的应用研究进展. 农业资源与环境学报. 2023(04): 840-851 .
    10. 张琨霖,王贺琪,郭庆彬,刘欢欢,梁宏合,王乐,李贞景. 桑黄子实体多糖的提取工艺优化、结构解析及免疫活性分析. 食品工业科技. 2023(20): 93-100 . 本站查看
    11. 黄卫红,董乐. 紫球藻胞外多糖酶解物的纯化、红外鉴定及其抗氧化活性. 泉州师范学院学报. 2023(05): 19-27 .
    12. 曾凡珂,潘蕾蔓,张祎,赖富饶,吴晖,张猛猛. 荸荠皮多糖的理化性质及抗氧化活性. 现代食品科技. 2022(03): 82-88+81 .
    13. 王朝群,杨燕,唐超,何希瑞. 天麻多糖提取分离方法和药理作用研究进展. 中国药事. 2022(04): 417-428 .
    14. 杨斯惠,向月,曹亚楠,任远航,彭镰心,时小东. 植物多糖的益生作用及其影响因素研究进展. 食品科学. 2022(11): 301-310 .
    15. 刘亚楠,李欢,蒋凡,傅玲琳,王彦波. 基于活性包装视角下的水产品保鲜机制研究进展. 食品科学. 2022(13): 285-291 .
    16. 陈超,谭书明,王画,杨笙,代晓桐. 刺梨及其活性成分对2型糖尿病小鼠糖脂代谢的影响. 食品科学. 2022(13): 146-154 .
    17. 郭建行,贾颂华,李博润,李珊珊,冀晓龙,刘延奇. 红海藻多糖提取、分离纯化及生物活性研究进展. 食品研究与开发. 2022(16): 216-224 .
    18. 孙艳宾,李宁,梁君玲,张慧婧,景大为,张川. 海藻酸钠提取工艺研究进展. 食品科技. 2022(08): 201-206 .
    19. 贾薇,余冬生,余养朝,冯占,胡明,张劲松,汪雯翰. 三相分离法制备金针菇提取物中多糖的理化性质及体外活性. 食用菌学报. 2022(05): 73-80 .
    20. 孔丽,朱月霞,周冰雪,刘志,薛旺迁,石锦峰,郑家勤,李姣姣,吉敬,秦昆明,董自波,沈金阳. 海蒿子多糖提取、纯化及其药理活性研究进展. 大连海洋大学学报. 2022(05): 894-902 .
    21. 高玥,许倩楠,蔡明刚,胡贤陈,田文静,陈海峰. 海洋来源药食同源品开发利用研究进展. 中草药. 2021(17): 5455-5464 .
    22. 陆伊俏,池海波,厉桂宁,陈纤,邱家港,余辉,方旭波,陈小娥. 可口革囊星虫体腔液多糖碱提工艺优化及其抗氧化性研究. 食品工业科技. 2021(19): 204-210 . 本站查看
    23. 刘小杰,倪辉. 海藻多糖在乳品工业中的应用研究进展. 乳业科学与技术. 2021(06): 31-38 .
    24. 林晓娟,苏志琛,陈继承. 海带多糖的结构特征、生物活性及其应用. 现代食品. 2021(24): 49-52 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (809) PDF downloads (90) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return