WANG Jingrui, PENG Jiamin, DAI Cheng, et al. Study on the Interaction Mechanism between Galactomannan and Human Serum Albumin by Spectroscopy and Molecular Docking[J]. Science and Technology of Food Industry, 2022, 43(2): 42−49. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040093.
Citation: WANG Jingrui, PENG Jiamin, DAI Cheng, et al. Study on the Interaction Mechanism between Galactomannan and Human Serum Albumin by Spectroscopy and Molecular Docking[J]. Science and Technology of Food Industry, 2022, 43(2): 42−49. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040093.

Study on the Interaction Mechanism between Galactomannan and Human Serum Albumin by Spectroscopy and Molecular Docking

More Information
  • Received Date: April 11, 2021
  • Available Online: November 16, 2021
  • Objective: To study the effect of galactomannan on the spectral characteristics of human serum albumin (HSA) and the mechanism of their interaction. Methods: Multispectroscopic analyses were used to determine the quenching method, number of binding sites, type of binding force, and changes in secondary structure between galactomannan and HSA. The type and length of binding force were obtained by molecular docking simulation, which further proved that the mechanism of interaction between galactomannan and HSA. Results: Under the action of galactomannan, the endogenous fluorescence of HSA was regularly quenched. The quenching process was spontaneous. The mechanism was static quenching. The number of binding sites was about 1, and the α-helix of HSA was reduced by 7.7%. The results of molecular docking showed that galactomannan interacted in HSA subdomain IIB through hydrogen bonds and van der Waals forces. Conclusions: The interaction between galactomannan and HSA was strong, and the binding was spontaneous.
  • [1]
    SITTIKIJYOTHIN W, TORRES D, GONÇALVES M P. Modelling the rheological behaviour of galactomannan aqueous solutions[J]. Carbohydrate Polymers,2005,59(3):339−350. doi: 10.1016/j.carbpol.2004.10.005
    [2]
    LOSER Ú, ITURRIAGA L, RIBOTTA P D, et al. Combined systems of starch and Gleditsia triacanthos galactomannans: Thermal and gelling properties[J]. Food Hydrocolloids,2021,112:106378. doi: 10.1016/j.foodhyd.2020.106378
    [3]
    LIU L, LI M, YU M, et al. Natural polysaccharides exhibit anti-tumor activity by targeting gut microbiota[J]. International Journal of Biological Macromolecules,2019,121:743−751. doi: 10.1016/j.ijbiomac.2018.10.083
    [4]
    SINDHU R K, GOYAL A, DAS J, et al. Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review[J]. Carbohydrate Polymer Technologies and Applications,2021,2:100044. doi: 10.1016/j.carpta.2021.100044
    [5]
    BEUTLER B. Innate immunity: An overview[J]. Molecular Immunology,2004,40(12):845−859. doi: 10.1016/j.molimm.2003.10.005
    [6]
    PANTOSTI A, TZIANABOS A O, ONDERDONK A B, et al. Immunochemical characterization of two surface polysaccharides of Bacteroides fragilis[J]. Infection and Immunity,1991,59(6):2075. doi: 10.1128/iai.59.6.2075-2082.1991
    [7]
    SHI L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review[J]. International Journal of Biological Macromolecules,2016,92:37−48. doi: 10.1016/j.ijbiomac.2016.06.100
    [8]
    ZHANG G, MA Y. Mechanistic and conformational studies on the interaction of food dye amaranth with human serum albumin by multispectroscopic methods[J]. Food Chemistry,2013,136(2):442−449. doi: 10.1016/j.foodchem.2012.09.026
    [9]
    CIEPLAK M, SZWABINSKA K, SOSNOWSKA M, et al. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting[J]. Biosensors and Bioelectronics,2015,74:960−966. doi: 10.1016/j.bios.2015.07.061
    [10]
    PENG X, WANG X, QI W, et al. Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability[J]. Food Chemistry,2016,192:178−187. doi: 10.1016/j.foodchem.2015.06.109
    [11]
    肖建波. 多酚类化合物与血清白蛋白相互作用的结构—结合力关系、理论模型和应用研究[D]. 长沙: 中南大学, 2009.

    XIAO J B. Structure-affinity relationship, theory model and application of interaction between polyphenols and serum albumin[D]. Changsha: Central South University, 2009.
    [12]
    MANJUSHREE M, REVANASIDDAPPA H D. Evaluation of binding mode between anticancer drug etoposide and human serum albumin by numerous spectrometric techniques and molecular docking[J]. Chemical Physics,2020,530:110593. doi: 10.1016/j.chemphys.2019.110593
    [13]
    LIU T, LIU M, GUO Q, et al. Investigation of binary and ternary systems of human serum albumin with oxyresveratrol/piceatannol and/or mitoxantrone by multipectroscopy, molecular docking and cytotoxicity evaluation[J]. Journal of Molecular Liquids,2020,311:113364. doi: 10.1016/j.molliq.2020.113364
    [14]
    MUSA K A, NING T, MOHAMAD S B, et al. Intermolecular recognition between pyrimethamine, an antimalarial drug and human serum albumin: Spectroscopic and docking study[J]. Journal of Molecular Liquids,2020,311:113270. doi: 10.1016/j.molliq.2020.113270
    [15]
    NERUSU A, VAIKUNTAPU P R, CHINTHAPALLI D K, et al. Truncated domains of human serum albumin improves the binding efficiency of uremic toxins: A surface plasmon resonance and computational approach[J]. International Journal of Biological Macromolecules,2020,155:1216−1225. doi: 10.1016/j.ijbiomac.2019.11.089
    [16]
    LI J, REN C, ZHANG Y, et al. Human serum albumin interaction with honokiol studied using optical spectroscopy and molecular modeling methods[J]. Journal of Molecular Structure,2008,881(1):90−96.
    [17]
    KHAN I M, SHAKYA S, AKHTAR R, et al. Exploring interaction dynamics of designed organic cocrystal charge transfer complex of 2-hydroxypyridine and oxalic acid with human serum albumin: Single crystal, spectrophotometric, theoretical and antimicrobial studies[J]. Bioorganic Chemistry,2020,100:103872. doi: 10.1016/j.bioorg.2020.103872
    [18]
    JALALVAND A R, GHOBADI S, AKBARI V, et al. Mathematical modeling of interactions of cabergoline with human serum albumin for biosensing of human serum albumin[J]. Sensing and Bio-Sensing Research,2019,25:100297. doi: 10.1016/j.sbsr.2019.100297
    [19]
    BOURASSA P, DUBEAU S, MAHARVI G M, et al. Binding of antitumor tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen to human serum albumin[J]. Biochimie,2011,93(7):1089−1101. doi: 10.1016/j.biochi.2011.03.006
    [20]
    DING F, LIU W, ZHANG L, et al. Sulfometuron-methyl binding to human serum albumin: Evidence that sulfometuron-methyl binds at the sudlow's site I[J]. Journal of Molecular Structure,2010,968(1):59−66.
    [21]
    KIM H S, HAGE D S. Chromatographic analysis of carbamazepine binding to human serum albumin[J]. Journal of Chromatography B,2005,816(1):57−66.
    [22]
    KALANUR S S, SEETHARAMAPPA J, KALALBANDI V K A. Characterization of interaction and the effect of carbamazepine on the structure of human serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,53(3):660−666. doi: 10.1016/j.jpba.2010.05.025
    [23]
    BOURASSA P, HASNI I, TAJMIR RIAHI H A. Folic acid complexes with human and bovine serum albumins[J]. Food Chemistry,2011,129(3):1148−1155. doi: 10.1016/j.foodchem.2011.05.094
    [24]
    SARZEHI S, CHAMANI J. Investigation on the interaction between tamoxifen and human holo-transferrin: Determination of the binding mechanism by fluorescence quenching, resonance light scattering and circular dichroism methods[J]. International Journal of Biological Macromolecules,2010,47(4):558−569. doi: 10.1016/j.ijbiomac.2010.08.002
    [25]
    MATEI I, HILLEBRAND M. Interaction of kaempferol with human serum albumin: A fluorescence and circular dichroism study[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,51(3):768−773. doi: 10.1016/j.jpba.2009.09.037
    [26]
    TAYYAB S, SAM S E, KABIR M Z, et al. Molecular interaction study of an anticancer drug, ponatinib with human serum albumin using spectroscopic and molecular docking methods[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,214:199−206. doi: 10.1016/j.saa.2019.02.028
    [27]
    MOHAMMADZADEH AGHDASH H, AKBARI N, ESAZADEH K, et al. Molecular and technical aspects on the interaction of serum albumin with multifunctional food preservatives[J]. Food Chemistry,2019,293:491−498. doi: 10.1016/j.foodchem.2019.04.119
    [28]
    申炳俊, 柳婷婷. 光谱法和分子对接技术研究胡桃醌与人血清白蛋白的相互作用[J]. 分析化学,2020,48(10):1383−1391. [SHEN B J, LIU T T. Study on the interaction between juglone and human serum albumin by spectroscopy and molecular docking technology[J]. Chinese Journal of Analytical Chemistry,2020,48(10):1383−1391.
    [29]
    李楠, 曾观娣, 孙正华, 等. 光谱法结合分子对接研究普罗帕酮与牛血清白蛋白的相互作用[J]. 分析试验室,2020,39(10):1148−1154. [LI N, ZENG G D, SUN Z H, et al. Study on the interactions of propafenone with bovine serum albumins using multi-spectroscopy and molecular docking[J]. Chinese Journal of Analysis Laboratory,2020,39(10):1148−1154.
    [30]
    赵旭红, 夏彩芬, 周紫薇, 等. 花青素对牛血清白蛋白的光谱特性及构象的影响[J]. 食品工业科技,2021,42(7):57−62. [ZHAO X H, XIA C F, ZHOU Z W, et al. Study on spectral properties and conformation of bovine serum album by anthocyanin[J]. Science and Technology of Food Industry,2021,42(7):57−62.
    [31]
    裘兰兰, 李金贵, 李芳. 分子对接技术与光谱法分析薯蓣皂苷和人血清白蛋白的相互作用[J]. 现代食品科技,2020,36(10):93−99. [QIU L L, LI J G, LI F. Interaction between dioscin and human serum albumin analyzed by molecular docking technique and spectroscopy[J]. Modern Food Science and Technology,2020,36(10):93−99.
    [32]
    吕艳芳, 梁倩倩, 郭雨晴, 等. 分子对接和光谱法研究原儿茶醛和阿魏酸与牛血清白蛋白的互作机理[J]. 食品科学,2021,42(14):24−31. [LV Y F, LIANG Q Q, GUO Y Q, et al. Studies on the interactions of protocatechuic aldehyde and ferulic acid with bovine serum albumin by molecular docking and spectroscopy[J]. Food Science,2021,42(14):24−31.
    [33]
    何文妮, 陈开意, 邵波. 对氨基苯甲酸与牛血清白蛋白相互作用的荧光分析[J]. 河南化工,2020,37(9):23−28. [HE W N, CHEN K Y, SHAO B. Fluorescence analysis on the interaction between p-aminobenzoic acid and bovine serum albumin[J]. Henan Chemical Industry,2020,37(9):23−28.
    [34]
    张保林, 王文清, 袁荣尧. 蒽醌及黄酮类化合物与牛血清白蛋白结合的反应研究[J]. 化学学报,1994(12):1208−1212. [ZHANG B L, WANG W Q, YUAN R Y. Binding of anthraqulnones and flavonoids to bovine serum albumin[J]. Acta Chimica Sinica,1994(12):1208−1212.
    [35]
    WANG W, GAN N, SUN Q, et al. Study on the interaction of ertugliflozin with human serum albumin in vitro by multispectroscopic methods, molecular docking, and molecular dynamics simulation[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,219:83−90. doi: 10.1016/j.saa.2019.04.047
    [36]
    豆换敬. 分子光谱法研究血红蛋白和小分子的相互作用[D]. 郑州: 郑州大学, 2014.

    DOU H J. Studies on the interaction between hemoglobin and small molecule by molecular spectrometry[D]. Zhengzhou: Zhengzhou University, 2014.
    [37]
    陈蓉蓉. 光谱法研究四种青蒿素类抗疟药与人血清白蛋白的相互作用[D]. 广州: 暨南大学, 2013.

    CHEN R R. Spectrometric studies on the interaction between four anti-malarial drugs of the artemisinins and human serum albumin[D]. Guangzhou: Jinan University, 2013.
    [38]
    CHAVES O A, FERNANDES T V A, De MELOS J L R, et al. Elucidation of the interaction between human serum albumin(HSA) and 3, 4-methylenedioxyde-6-iodo-benzaldehyde-thiosemicarbazone, a potential drug for leishmania amazonensis: Multiple spectroscopic and dynamics simulation approach[J]. Journal of Molecular Liquids,2020,310:113117. doi: 10.1016/j.molliq.2020.113117
    [39]
    ZHU G, WANG Y, XI L, et al. Spectroscopy and molecular docking studies on the binding of propyl gallate to human serum albumin[J]. Journal of Luminescence,2015,159:188−196. doi: 10.1016/j.jlumin.2014.11.020
    [40]
    张丽娇. 光谱法和分子对接技术研究FTO蛋白与小分子的相互作用[D]. 郑州: 郑州大学, 2017.

    ZHANG L J. Studying on the interaction of FTO protein with small molecules by spectroscopy and molecular docking[D]. Zhengzhou: Zhengzhou University, 2017.
    [41]
    GEHLEN M H. The centenary of the stern-volmer equation of fluorescence quenching: From the single line plot to the sv quenching map[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2020,42:100338. doi: 10.1016/j.jphotochemrev.2019.100338
    [42]
    CIOTTA E, PROSPOSITO P, PIZZOFERRATO R. Positive curvature in stern-volmer plot described by a generalized model for static quenching[J]. Journal of Luminescence,2019,206:518−522. doi: 10.1016/j.jlumin.2018.10.106
    [43]
    TAYEH N, RUNGASSAMY T, ALBANI J R. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins[J]. Journal of Pharmaceutical and Biomedical Analysis,2009,50(2):107−116. doi: 10.1016/j.jpba.2009.03.015
    [44]
    MEMARPOOR YAZDI M, MAHAKI H. Probing the interaction of human serum albumin with vitamin B2 (riboflavin) and L-arginine (L-arg) using multi-spectroscopic, molecular modeling and zeta potential techniques[J]. Journal of Luminescence,2013,136:150−159. doi: 10.1016/j.jlumin.2012.11.016
    [45]
    WANG Q, SUN Q, MA X, et al. Probing the binding interaction of human serum albumin with three bioactive constituents of Eriobotrta japonica leaves: Spectroscopic and molecular modeling approaches[J]. Journal of Photochemistry and Photobiology B:Biology,2015,148:268−276. doi: 10.1016/j.jphotobiol.2015.04.030
    [46]
    AFRIN S, RIYAZUDDEEN, RABBANI G, et al. Spectroscopic and calorimetric studies of interaction of methimazole with human serum albumin[J]. Journal of Luminescence,2014,151:219−223. doi: 10.1016/j.jlumin.2014.02.028
    [47]
    PARVEEN I, KHAN P, ALI S, et al. Synthesis, molecular docking and inhibition studies of novel 3-n-aryl substituted-2-heteroarylchromones targeting microtubule affinity regulating kinase 4 inhibitors[J]. European Journal of Medicinal Chemistry,2018,159:166−177. doi: 10.1016/j.ejmech.2018.09.030
    [48]
    EFTINK M R, GHIRON C A. Fluorescence quenching studies with proteins[J]. Analytical Biochemistry,1981,114(2):199−227. doi: 10.1016/0003-2697(81)90474-7
    [49]
    DING F, LIU W, ZHANG X, et al. Fluorescence and circular dichroism studies of conjugates between metsulfuron-methyl and human serum albumin[J]. Colloids and Surfaces B: Biointerfaces,2010,76(2):441−448. doi: 10.1016/j.colsurfb.2009.12.003
    [50]
    BI S, DING L, TIAN Y, et al. Investigation of the interaction between flavonoids and human serum albumin[J]. Journal of Molecular Structure,2004,703(1):37−45.
    [51]
    KOLAWOLE A O, KOLAWOLE A N, OLOFINSAN K A, et al. Kolaflavanone of kolaviron selectively binds to subdomain 1b of human serum albumin: Spectroscopic and molecular docking evidences[J]. Computational Toxicology,2020,13:100118. doi: 10.1016/j.comtox.2020.100118
    [52]
    LI J, ZHANG Y, HU L, et al. Binding of carbendazim to bovine serum albumin: Insights from experimental and molecular modeling studies[J]. Journal of Molecular Structure,2017,1139:303−307. doi: 10.1016/j.molstruc.2017.03.048
    [53]
    ISHTIKHAR M, RABBANI G, KHAN R H. Interaction of 5-fluoro-5'-deoxyuridine with human serum albumin under physiological and non-physiological condition: A biophysical investigation[J]. Colloids and Surfaces B:Biointerfaces,2014,123:469−477. doi: 10.1016/j.colsurfb.2014.09.044
    [54]
    SHAHABADI N, MAGHSUDI M, ROUHANI S. Study on the interaction of food colourant quinoline yellow with bovine serum albumin by spectroscopic techniques[J]. Food Chemistry,2012,135(3):1836−1841. doi: 10.1016/j.foodchem.2012.06.095
    [55]
    XIAO D, ZHANG L, WANG Q, et al. Investigations of the interactions of peimine and peiminine with human serum albumin by spectroscopic methods and docking studies[J]. Journal of Luminescence,2014,146:218−225. doi: 10.1016/j.jlumin.2013.09.067
    [56]
    DING F, ZHANG L, DIAO J, et al. Human serum albumin stability and toxicity of anthraquinone dye alizarin complexone: An albumin-dye model[J]. Ecotoxicology and Environmental Safety,2012,79:238−246. doi: 10.1016/j.ecoenv.2012.01.009
    [57]
    ERMAKOVA E A, DANILOVA A G, KHAIRUTDINOV B I. Interaction of ceftriaxone and rutin with human serum albumin. Waterlogsy-NMR and molecular docking study[J]. Journal of Molecular Structure,2020,1203:127444. doi: 10.1016/j.molstruc.2019.127444
    [58]
    CHUGH H, KUMAR P, TOMAR V, et al. Interaction of noscapine with human serum albumin(HSA): A spectroscopic and molecular modelling approach[J]. Journal of Photochemistry and Photobiology A:Chemistry,2019,372:168−176. doi: 10.1016/j.jphotochem.2018.12.001

Catalog

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return