GONG Wen, TANG Jie, WEI Yayuan, et al. In vitro Digestion and Fermentation Characteristics of Polysaccharides from Camellia nitidissima Chi[J]. Science and Technology of Food Industry, 2021, 42(24): 31−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040059.
Citation: GONG Wen, TANG Jie, WEI Yayuan, et al. In vitro Digestion and Fermentation Characteristics of Polysaccharides from Camellia nitidissima Chi[J]. Science and Technology of Food Industry, 2021, 42(24): 31−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040059.

In vitro Digestion and Fermentation Characteristics of Polysaccharides from Camellia nitidissima Chi

More Information
  • Received Date: April 07, 2021
  • Available Online: October 22, 2021
  • Polysaccharides were isolated from Camellia nitidissima Chi by water extraction and alcohol precipitation, then the polysaccharide extract was separated and purified by using DEAE-52 cellulose chromatography column. The digestion characteristics of the polysaccharides were studied in vitro by employing a simulated upper gastrointestinal model and analyzing molecular weight, reducing sugar and free monosaccharide ontents of digested products at different digestion times. The fermentation characteristics of polysaccharides were studied in vitro by using human fecal fermentation model and analyzing pH, total sugar, reducing sugar and short chain fatty acid content, as well as the Lactobacillus, Bifidobacterium and Escherichia coli number. The results showed that, TPS1, TPS2, and TPS3 were obtained after purification of the polysaccharide from Camellia nitidissima Chi. During in vitro digestion, the molecular weight of TPS1, TPS2, TPS3 and the reducing sugar content did not changed by simulated saliva and simulated intestinal juice. Simulated gastric juice caused a slight decrease in the molecular weight of TPS1, TPS2, and TPS3, and the content of reducing sugar increased from 0.129±0.016, 0.155±0.026, 0.147±0.017 mmol/L to 0.223±0.018, 0.319±0.013, 0.294±0.030 mmol/L. Free monosaccharides were not detected during the digestion. During the fermentation process, the pH of the group added with TPS1, TPS2, and TPS3 was significantly lower than that of the blank control group, the sugar consumption rate was 91.4%, 89.0%, 94.5%, and the reducing sugar content increased during 0~18 h, reduced during 18~48 h. Compared with the blank control group, the levels of acetic acid, propionic acid, and butyric acid were all significantly increased and the order of increasing multiple size was TPS3>TPS2>TPS1. Further, TPS1, TPS2 and TPS3 could promote the growth of Lactobacillus and Bifidobacterium, inhibit the growth of Escherichia coli, and the order of probiotic effects was TPS3>TPS2>TPS1. In summary, the polysaccharides were isolated from Camellia nitidissima Chi were not digested in vitro, and could be used by fecal microflora to produce a large amount of acetic acid, propionic acid and butyric acid, which had potential probiotic effects. And TPS3 had better probiotic effects than TPS2 and TPS1.
  • [1]
    ULLAH S, KHALIL A A, SHAUKAT F, et al. Sources, extraction and biomedical properties of polysaccharides[J]. Foods,2019,8(8):304. doi: 10.3390/foods8080304
    [2]
    KOZIOLEK M, SCHNEIDER F, GRIMM M, et al. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies[J]. Journal of Controlled Release,2015:220.
    [3]
    MACKIE A R, RAFIEE H, MALCOLM P, et al. Specific food structures supress appetite through reduced gastric emptying rate[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2013,304(11):G1038−G1043. doi: 10.1152/ajpgi.00060.2013
    [4]
    陈培琳, 游卿翔, 常青, 等. 植物多糖消化酵解特性的研究进展[J]. 食品工业科技,2019,40(1):299−304. [CHEN P L, YOU Q X, CHANG Q, et al. Research progress of digestive and fermentation characteristics of plant polysaccharides[J]. Science and Technology of Food Industry,2019,40(1):299−304.
    [5]
    HU J, NIE S, MIN F, et al. Artificial simulated saliva, gastric and intestinal digestion of polysaccharide from the seeds of Plantago asiatica L.[J]. Carbohydrate Polymers,2013,92(2):1143−1150. doi: 10.1016/j.carbpol.2012.10.072
    [6]
    张冠亚, 黄晓君, 聂少平, 等. 体外模拟3种消化液对铁皮石斛多糖的消化作用[J]. 食品科学,2014,35(23):279−283. [ZHANG G Y, HUANG X J, NIE S P, et al. Effects of three digestive juices on the in vitro digestion of Dendrobium officinale polysaccharide[J]. Food Science,2014,35(23):279−283. doi: 10.7506/spkx1002-6630-201423054
    [7]
    WANG C, LI W, CHEN Z, et al. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus[J]. Food Research International,2018,103:280−288. doi: 10.1016/j.foodres.2017.10.058
    [8]
    戴博, 王广义. 短链脂肪酸对肠道健康的调控机制研究[J]. 广东化工,2020,47(24):54−63. [DAI B, WANG G Y. Regulation mechanism of short chain fatty acids on intestinal health[J]. Guangdong Chemical Industry,2020,47(24):54−63.
    [9]
    周超. 短链脂肪酸(丁酸)通过HIF-1α调节肠上皮细胞自噬在缓解结肠炎中的机制研究[D]. 重庆: 中国人民解放军陆军军医大学, 2020.

    ZHOU C. SCFAs(butyric acid) regulate autophagy in intestinal epithelial cells and relieve colitis by HIF-1α[D]. Chongqing: Third Military Medical University, 2020.
    [10]
    WENDY C, ERIKA M. Effects of short chain fatty acids on metabolic and inflammatory processes in human health[J]. BBA-Molecular and Cell Biology of Lipids,2021,1866(5):158900. doi: 10.1016/j.bbalip.2021.158900
    [11]
    MSC P L, MD B R Y, PHD M B Y. Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant(FMT)[J]. Diabetes, Obesity and Metabolism,2019,21(3):479−490. doi: 10.1111/dom.13561
    [12]
    梁源, 于瑞丽, 尹悦, 等. 肠道菌群及其代谢产物在糖脂代谢中的作用[J]. 生理科学进展,2019,50(5):321−325. [LIANG Y, YU R L, YIN Y, et al. Effects of gut microbiota and its metabolite in glucose and lipid metabolism[J]. Progress in Physiological Sciences,2019,50(5):321−325. doi: 10.3969/j.issn.0559-7765.2019.05.001
    [13]
    MAHIZIR D, BRIFFA J F, WOOD J L, et al. Exercise improves metabolic function and alters the microbiome in rats with gestational diabetes[J]. The FASEB Journal,2020,34(1):1728−1744. doi: 10.1096/fj.201901424R
    [14]
    周张杰, 蒋海燕, 钟薏, 等. 健脾固肠方通过提高短链脂肪酸产生菌的丰度减轻肠癌小鼠化疗后肠道炎症反应的机制探讨[J]. 中国中医基础医学杂志, 2020, 26(5): 618-621.

    ZHOU Z J, JIANG H Y, ZHONG Y, et al. Effect of Jianpi Guchang recipe on intestinal inflammatory response after chemotherapy in intestinal carcinoma mice by enhancing abundance of short-chain fatty acid producing bacteria[J]. Journal of Basic Chinese Medicine, 2020, 25(5): 618-621.
    [15]
    苏宗明, 莫新礼. 我国金花茶组植物的地理分布[J]. 广西植物,1988(1):75−81. [SU Z M, MO X L. Geographical distribution of Camellia nitidissima Chi in China[J]. Guihaia,1988(1):75−81.
    [16]
    黄思茂, 曹后康, 高雅, 等. 金花茶多糖对四氯化碳致小鼠急性肝损伤的保护作用及其机制的研究[J]. 中药药理与临床,2016,32(6):117−120. [HUANG S M, CAO H K, GAO Y, et al. Protective effect and mechanism of polysaccharides of Camellia nitidissima on acute hepatic injury induced by carbon tetrachloride in mice[J]. Pharmacology and Clinics of Chinese Materia Medica,2016,32(6):117−120.
    [17]
    路垚. 金花茶多糖降血脂机理初探及其亲和层析分离技术的研究[D]. 湛江: 广东海洋大学, 2014.

    LU Y. Premilinary study on the hypolipemic mechanism andaffinity chromatography of polysaccharides from Camellia chrysantha (Hu) Tuyama[D]. Zhanjiang: Guangdong Ocean University, 2014.
    [18]
    牛广俊, 朱思, 陈清英, 等. 金花茶不同部位多糖的测定及体外抗氧化活性[J]. 中国实验方剂学杂志,2014,20(20):168−172. [NIU G J, ZHU S, CHEN Q Y, et al. Determination polysaccharides and antioxidant activity of different parts of Camellia chrysantha[J]. Chinese Journal of Experimental Traditional Medical Formulae,2014,20(20):168−172.
    [19]
    田晓春. 金花茶多糖的分离纯化及化学结构的研究[D]. 湛江: 广东海洋大学, 2011.

    TIAN X C. Studies on isolation, purification and structure identification for polysaccharides from Camellia chrysantha(Hu) Tuyama[D]. Zhanjiang: Guangdong Ocean University, 2011.
    [20]
    郑朋朋, 李珊, 张保, 等. 苯酚硫酸法测定萌发菌HL-003多糖方法的研究[J]. 食品工业科技,2016,37(6):74−77. [ZHENG P P, LI S, ZHANG B, et al. Study on phenol-sulfuric acid method for determination of polysaccharides from germination fungus HL-003[J]. Science and Technology of Food Industry,2016,37(6):74−77.
    [21]
    王佳, 李进霞, 张慧芝, 等. 虎杖多糖乙醇分级纯化及其抗氧化性[J]. 食品工业科技,2019,40(1):92−95. [WANG J, LI J X, ZHANG H Z, et al. Ethanol fractional purification and antioxidant activities of polysaccharides from Polygonum cuspidatum[J]. Science and Technology of Food Industry,2019,40(1):92−95.
    [22]
    王艾平, 周丽明. 考马斯亮蓝法测定茶籽多糖中蛋白质含量条件的优化[J]. 河南农业科学, 2014,43(3):150-153.

    WANG Aiping, ZHOU Liming. Determination of protein content in camellia oleifera seed polysaccharides by coomassie brilliant blue method[J]. Journal of Henan Agricultural Sciences, 2014,43(3):150-153.
    [23]
    夏甜天, 曹龙奎. 几种不同提取方法对燕麦总多酚含量的影响[J]. 食品工业科技,2017,38(20):183−189. [XIA T T, CAO L K. Effects of several different extraction methods on total polyphenols content in oat[J]. Science and Technology of Food Industry,2017,38(20):183−189.
    [24]
    李环, 陆佳平, 王登进. DNS法测定山楂片中还原糖含量的研究[J]. 食品工业科技,2013,34(18):75−77. [LI H, LU J P, WANG C J. Study on determination of reducing sugar from haw flakes with DNS colorimetry method[J]. Science and Technology of Food Industry,2013,34(18):75−77.
    [25]
    贾金霞, 任晓婕, 李宝花, 等. 新型铜绿菇多糖的制取、结构性质及其抗氧化活性的研究[J]. 食品工业科技,2020,41(5):188−194. [JIA J X, REN X J, LI B H, et al. Study on the preparation, structure, properties and antioxidant activity of new polysaccharides from Russula aeruginea Lindb. : Fr[J]. Science and Technology of Food Industry,2020,41(5):188−194.
    [26]
    王贵春, 陈雪峰, 刘宁, 等. 柱前衍生化高效液相色谱法分析发菜胞外多糖的单糖组成[J]. 食品工业科技,2015,36(10):59−61. [WANG G C, CHEN X F, LIU N, et al. Analysis of monosaccharide compositions of Nostoc flagelliforme extracellular polysaccharide by pre-column derivation HPLC[J]. Science and Technology of Food Industry,2015,36(10):59−61.
    [27]
    BRODKORB A, EGGER L, ALMINGER M, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion[J]. Nature Protocols: Recipes for Researchers,2019,14(4):991−1014.
    [28]
    RAMNANI P, CHITARRARI R, TUOHY K, et al. In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds[J]. Anaerobe,2012,18(1):1−6. doi: 10.1016/j.anaerobe.2011.08.003
    [29]
    OLANO-MARTIN E, MOUNTZOURIS K C, GIBSON G R, et al. In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria[J]. British Journal of Nutrition,2000,83(3):247−255. doi: 10.1017/S0007114500000325
    [30]
    耿梅梅, 许丽卫, 袁红朝, 等. 气相色谱法测定猪结肠内容物中短链脂肪酸含量[J]. 现代生物医学进展,2015,15(6):1010−1014. [GENG M M, XU L W, YUAN C H, et al. A Determination method based on gas chromatography for analysis of short-chain fatty acids in colonic contents of piglet[J]. Progress in Modern Biomedicine,2015,15(6):1010−1014.
    [31]
    GUO M M, TANG H G, YAO H J, et al. Study on the isolation of polysaccharide from purple sweet potato by DEAE-cellulose 52[J]. Advanced Materials Research,2013,690-693:1286−1291. doi: 10.4028/www.scientific.net/AMR.690-693.1286
    [32]
    LEE J S, SYNYTSYA A, KIM H B, et al. Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi(Morus alba L.)[J]. International Immunopharmacology,2013,17(3):858−866. doi: 10.1016/j.intimp.2013.09.019
    [33]
    BRAM D, JORAN V, ANNICK P, et al. Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence[J]. Molecular Nutrition & Food Research,2011,55(12):1862−1874.
    [34]
    CHEN J, LIANG R, LIU W, et al. Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism[J]. Food Hydrocolloids,2012,28(1):121−129. doi: 10.1016/j.foodhyd.2011.12.018
    [35]
    闵芳芳, 聂少平, 万宇俊, 等. 青钱柳多糖在体外消化模型中的消化与吸收[J]. 食品科学,2013,34(21):24−29. [MIN F F, NIE S P, WAN Y J, et al. In vitro digestion and absorption of polysaccharide from Cyclocarya paliurus leaves[J]. Food Science,2013,34(21):24−29.
    [36]
    刘松珍, 张雁, 张名位, 等. 肠道短链脂肪酸产生机制及生理功能的研究进展[J]. 广东农业科学,2013,40(11):99−103. [LIU S Z, ZHANG Y, ZHANG M W, et al. Research progress on producing mechanism and physiological functions of intestinal short chain fatty acids[J]. Guangdong Agricultural Sciences,2013,40(11):99−103. doi: 10.3969/j.issn.1004-874X.2013.11.029
    [37]
    高渊, 刘孟洋, 曹谨玲, 等. 基于体外模型研究广叶绣球菌多糖的酵解特性[J]. 食品科技,2021,46(1):15−20. [GAO Y, LIU M Y, CAO J L, et al. The fermentation characteristics of polysaccharides from Sparassis latifolia based on in vitro model[J]. Food Science and Technology,2021,46(1):15−20.
    [38]
    姚思雯, 何佳丽, 朱科学, 等. 菠萝蜜多糖体外酵解特征研究[J]. 现代食品科技,2019,35(3):87−94. [YAO S W, HE J L, ZHU K X, et al. In vitro fermentation characteristics of polysaccharides from Artocarpus heterophyllus Lam. pulp[J]. Modern Food Science and Technology,2019,35(3):87−94.
    [39]
    陈春. 桑葚多糖的结构鉴定、活性评价及其体外消化酵解[D]. 广州: 华南理工大学, 2018.

    CHEN C. Structural identification, biological activities evaluation, digestion and fermentation in vitro of polysaccharides from Fructus mori[D]. Zhanjiang: South China University of Technology, 2018.
    [40]
    Besten G D, Eunen K V, Groen A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. Journal of Lipid Research,2013,54(9):2325−2340. doi: 10.1194/jlr.R036012

Catalog

    Article Metrics

    Article views (266) PDF downloads (56) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return