Citation: | ZHANG Meng, WANG Guohui, ZHANG Xin, et al. Fabrication and Characterization of Antibacterial Polyvinyl Alcohol/Ag@MOF Films for Food Packing[J]. Science and Technology of Food Industry, 2021, 42(23): 243−250. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040039. |
[1] |
USMAN A, HUSSAIN Z, RIAZ A, et al. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films[J]. Carbohydrate Polymers,2016,153:592−599. doi: 10.1016/j.carbpol.2016.08.026
|
[2] |
AGUIRRE A, BORNEO R, LEÓN A E. Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil[J]. Food Bioscience,2013,1:2−9.
|
[3] |
AL-HASSAN A A, NORZIAH M H. Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers[J]. Food Hydrocolloids,2012,26(1):108−117. doi: 10.1016/j.foodhyd.2011.04.015
|
[4] |
ARADMEHR A, JAVANBAKHT V. A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: Synthesis and characterization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020:600.
|
[5] |
BAILORE N N , BALLADKA S K, DODDAPANENI S J D S , et al. Fabrication of environmentally compatible biopolymer films of pullulan/piscean collagen/ZnO nanocomposite and their antifungal activity[J]. Journal of Polymers and the Environment,2020,29:1192−1201.
|
[6] |
CHAHAL R P , MAHENDIA S, TOMAR A K , et al. γ-Irradiated PVA/Ag nanocomposite films: Materials for optical applications[J]. Journal of Alloys and Compounds,2012,538:212−219. doi: 10.1016/j.jallcom.2012.05.085
|
[7] |
BRA B, AFI B, MA B, et al. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment[J]. Int J Biol Macromol,2012,149:513−521.
|
[8] |
BONILLA J, POLONI T, LOUREN?O R V, et al. Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films[J]. Food Bioscience,2018,23:107−114. doi: 10.1016/j.fbio.2018.03.007
|
[9] |
P CAZON, M VAZQUEZ, VELAZQUEZ G. Composite films of regenerate cellulose with chitosan and polyvinyl alcohol: Evaluation of water adsorption, mechanical and optical properties[J]. Int J Biol Macromol,2018,117:235−246. doi: 10.1016/j.ijbiomac.2018.05.148
|
[10] |
CHEN Z, ZONG L, CHEN C, et al. Development and characterization of PVA-Starch active films incorporated with β-cyclodextrin inclusion complex embedding lemongrass (Cymbopogon citratus) oil[J]. Food Packaging and Shelf Life,2020:26.
|
[11] |
CHEN J, LI Y, ZHANG Y, et al. Preparation and characterization of graphene oxide reinforced PVA film with boric acid as crosslinker[J]. Journal of Applied Polymer Science,2015,132(22):n/a−n/a.
|
[12] |
MC A , DLP B , GQ B , et al. One-step eco-friendly synthesized silver-graphene oxide/poly(vinyl alcohol) antibacterial nanocomposites[J]. Carbon,2020,150:101−116.
|
[13] |
DAVE H K, NATH K. Graphene oxide incorporated novel polyvinyl alcohol composite membrane for pervaporative recovery of acetic acid from vinegar wastewater[J]. Journal of Water Process Engineering,2016,14:124−134. doi: 10.1016/j.jwpe.2016.11.002
|
[14] |
D DOMENE-LOPEZ, M M GUILLEN, I MARTIN-GULLON, et al. Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends[J]. Carbohydr Polym,2018,202:299−305. doi: 10.1016/j.carbpol.2018.08.137
|
[15] |
HE H, CAI R, WANG Y, et al. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application[J]. Int J Biol Macromol,2017,104(PtA):457−464.
|
[16] |
KOCHKINA N E , LUKIN N D. Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions[J]. Int J Biol Macromol,2020,157:377−384. doi: 10.1016/j.ijbiomac.2020.04.154
|
[17] |
TRAVLOU N A, ALGARRA M , ALCOHOLADO C, et al. Carbon quantum dot surface-chemistry-dependent ag release governs the high antibacterial activity of Ag-metal-organic framework composites[J]. ACS Applied Bio Materials,2028,1(3):693−707.
|
[18] |
BHARDWAJ N, BHARDWAJ S K, MEHTA J, et al. MOF-bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus[J]. ACS Appl Mater Interfaces,2017,9(39):33589−33598. doi: 10.1021/acsami.7b07818
|
[19] |
BAREA E, MONTORO C, NAVARRO J A. Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours[J]. Chem Soc Rev,2014,43(16):5419−5430. doi: 10.1039/C3CS60475F
|
[20] |
ABÁNADES LÁZARO I, FORGAN R S. Application of zirconium MOFs in drug delivery and biomedicine[J]. Coordination Chemistry Reviews,2019,380:230−259. doi: 10.1016/j.ccr.2018.09.009
|
[21] |
GUAN Q L , HAN C , BAI F Y, et al. Bismuth-MOF based on tetraphenylethylene derivative as a luminescent sensor with turn-off/on for application of Fe3+ detection in serum and bioimaging, as well as emissive spectra analysis by TRES[J]. Sensors and Actuators B:Chemical,2020:325.
|
[22] |
LEE S, ZHANG M, WANG W, et al. Characterization of polyvinyl alcohol/starch composite films incorporated with p-coumaric acid modified chitosan and chitosan nanoparticles: A comparative study[J]. Carbohydr Polym,2021,26:117930.
|
[23] |
JU S, ZHANG F, DUAN J, et al. Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study[J]. Carbohydr Polym,2020,237:116167. doi: 10.1016/j.carbpol.2020.116167
|
[24] |
ZHANG M, WANG G, WANG D, et al. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications[J]. Int J Biol Macromol,2021,175:481−494. doi: 10.1016/j.ijbiomac.2021.02.045
|
[25] |
LU X, YE J, ZHANG D, et al. Ning, Silver carboxylate metal-organic frameworks with highly antibacterial activity and biocompatibility[J]. J Inorg Biochem,2014,138:114−121. doi: 10.1016/j.jinorgbio.2014.05.005
|
[26] |
JO Y, GARCIA C V , KO S, et al. Characterization and antibacterial properties of nanosilver-applied polyethylene and polypropylene composite films for food packaging applications[J]. Food Bioscience,2018,23:83−90. doi: 10.1016/j.fbio.2018.03.008
|
[27] |
LU Z, GAO J, HE Q, et al. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing[J]. Carbohydr Polym,2017,156:460−469. doi: 10.1016/j.carbpol.2016.09.051
|
[28] |
RIAZ A, LAGNIKA C, LUO H, et al. Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films[J]. Carbohydr Polym,2020,235:115944. doi: 10.1016/j.carbpol.2020.115944
|
[29] |
LIU J, LIU S, CHEN Y, et al. Physical, mechanical and antioxidant properties of chitosan films grafted with different hydroxybenzoic acids[J]. Food Hydrocolloids,2017,71:176−186. doi: 10.1016/j.foodhyd.2017.05.019
|
[30] |
KANATT S R. Irradiation as a tool for modifying tapioca starch and development of an active food packaging film with irradiated starch[J]. Radiation Physics and Chemistry,2020:173.
|
[31] |
WU Y, LUO X, LI W, et al. Green and biodegradable composite films with novel antimicrobial performance based on cellulose[J]. Food Chem,2016,197:250−256. doi: 10.1016/j.foodchem.2015.10.127
|
[32] |
SARWAR M S, NIAZI M B K, JAHAN Z, et al. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging[J]. Carbohydr Polym,2018,184:453−464. doi: 10.1016/j.carbpol.2017.12.068
|