Citation: | ZHANG Meng, WANG Guohui, ZHANG Xin, et al. Fabrication and Characterization of Antibacterial Polyvinyl Alcohol/Ag@MOF Films for Food Packing[J]. Science and Technology of Food Industry, 2021, 42(23): 243−250. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040039. |
[1] |
USMAN A, HUSSAIN Z, RIAZ A, et al. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films[J]. Carbohydrate Polymers,2016,153:592−599. doi: 10.1016/j.carbpol.2016.08.026
|
[2] |
AGUIRRE A, BORNEO R, LEÓN A E. Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil[J]. Food Bioscience,2013,1:2−9.
|
[3] |
AL-HASSAN A A, NORZIAH M H. Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers[J]. Food Hydrocolloids,2012,26(1):108−117. doi: 10.1016/j.foodhyd.2011.04.015
|
[4] |
ARADMEHR A, JAVANBAKHT V. A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: Synthesis and characterization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020:600.
|
[5] |
BAILORE N N , BALLADKA S K, DODDAPANENI S J D S , et al. Fabrication of environmentally compatible biopolymer films of pullulan/piscean collagen/ZnO nanocomposite and their antifungal activity[J]. Journal of Polymers and the Environment,2020,29:1192−1201.
|
[6] |
CHAHAL R P , MAHENDIA S, TOMAR A K , et al. γ-Irradiated PVA/Ag nanocomposite films: Materials for optical applications[J]. Journal of Alloys and Compounds,2012,538:212−219. doi: 10.1016/j.jallcom.2012.05.085
|
[7] |
BRA B, AFI B, MA B, et al. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment[J]. Int J Biol Macromol,2012,149:513−521.
|
[8] |
BONILLA J, POLONI T, LOUREN?O R V, et al. Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films[J]. Food Bioscience,2018,23:107−114. doi: 10.1016/j.fbio.2018.03.007
|
[9] |
P CAZON, M VAZQUEZ, VELAZQUEZ G. Composite films of regenerate cellulose with chitosan and polyvinyl alcohol: Evaluation of water adsorption, mechanical and optical properties[J]. Int J Biol Macromol,2018,117:235−246. doi: 10.1016/j.ijbiomac.2018.05.148
|
[10] |
CHEN Z, ZONG L, CHEN C, et al. Development and characterization of PVA-Starch active films incorporated with β-cyclodextrin inclusion complex embedding lemongrass (Cymbopogon citratus) oil[J]. Food Packaging and Shelf Life,2020:26.
|
[11] |
CHEN J, LI Y, ZHANG Y, et al. Preparation and characterization of graphene oxide reinforced PVA film with boric acid as crosslinker[J]. Journal of Applied Polymer Science,2015,132(22):n/a−n/a.
|
[12] |
MC A , DLP B , GQ B , et al. One-step eco-friendly synthesized silver-graphene oxide/poly(vinyl alcohol) antibacterial nanocomposites[J]. Carbon,2020,150:101−116.
|
[13] |
DAVE H K, NATH K. Graphene oxide incorporated novel polyvinyl alcohol composite membrane for pervaporative recovery of acetic acid from vinegar wastewater[J]. Journal of Water Process Engineering,2016,14:124−134. doi: 10.1016/j.jwpe.2016.11.002
|
[14] |
D DOMENE-LOPEZ, M M GUILLEN, I MARTIN-GULLON, et al. Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends[J]. Carbohydr Polym,2018,202:299−305. doi: 10.1016/j.carbpol.2018.08.137
|
[15] |
HE H, CAI R, WANG Y, et al. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application[J]. Int J Biol Macromol,2017,104(PtA):457−464.
|
[16] |
KOCHKINA N E , LUKIN N D. Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions[J]. Int J Biol Macromol,2020,157:377−384. doi: 10.1016/j.ijbiomac.2020.04.154
|
[17] |
TRAVLOU N A, ALGARRA M , ALCOHOLADO C, et al. Carbon quantum dot surface-chemistry-dependent ag release governs the high antibacterial activity of Ag-metal-organic framework composites[J]. ACS Applied Bio Materials,2028,1(3):693−707.
|
[18] |
BHARDWAJ N, BHARDWAJ S K, MEHTA J, et al. MOF-bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus[J]. ACS Appl Mater Interfaces,2017,9(39):33589−33598. doi: 10.1021/acsami.7b07818
|
[19] |
BAREA E, MONTORO C, NAVARRO J A. Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours[J]. Chem Soc Rev,2014,43(16):5419−5430. doi: 10.1039/C3CS60475F
|
[20] |
ABÁNADES LÁZARO I, FORGAN R S. Application of zirconium MOFs in drug delivery and biomedicine[J]. Coordination Chemistry Reviews,2019,380:230−259. doi: 10.1016/j.ccr.2018.09.009
|
[21] |
GUAN Q L , HAN C , BAI F Y, et al. Bismuth-MOF based on tetraphenylethylene derivative as a luminescent sensor with turn-off/on for application of Fe3+ detection in serum and bioimaging, as well as emissive spectra analysis by TRES[J]. Sensors and Actuators B:Chemical,2020:325.
|
[22] |
LEE S, ZHANG M, WANG W, et al. Characterization of polyvinyl alcohol/starch composite films incorporated with p-coumaric acid modified chitosan and chitosan nanoparticles: A comparative study[J]. Carbohydr Polym,2021,26:117930.
|
[23] |
JU S, ZHANG F, DUAN J, et al. Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study[J]. Carbohydr Polym,2020,237:116167. doi: 10.1016/j.carbpol.2020.116167
|
[24] |
ZHANG M, WANG G, WANG D, et al. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications[J]. Int J Biol Macromol,2021,175:481−494. doi: 10.1016/j.ijbiomac.2021.02.045
|
[25] |
LU X, YE J, ZHANG D, et al. Ning, Silver carboxylate metal-organic frameworks with highly antibacterial activity and biocompatibility[J]. J Inorg Biochem,2014,138:114−121. doi: 10.1016/j.jinorgbio.2014.05.005
|
[26] |
JO Y, GARCIA C V , KO S, et al. Characterization and antibacterial properties of nanosilver-applied polyethylene and polypropylene composite films for food packaging applications[J]. Food Bioscience,2018,23:83−90. doi: 10.1016/j.fbio.2018.03.008
|
[27] |
LU Z, GAO J, HE Q, et al. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing[J]. Carbohydr Polym,2017,156:460−469. doi: 10.1016/j.carbpol.2016.09.051
|
[28] |
RIAZ A, LAGNIKA C, LUO H, et al. Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films[J]. Carbohydr Polym,2020,235:115944. doi: 10.1016/j.carbpol.2020.115944
|
[29] |
LIU J, LIU S, CHEN Y, et al. Physical, mechanical and antioxidant properties of chitosan films grafted with different hydroxybenzoic acids[J]. Food Hydrocolloids,2017,71:176−186. doi: 10.1016/j.foodhyd.2017.05.019
|
[30] |
KANATT S R. Irradiation as a tool for modifying tapioca starch and development of an active food packaging film with irradiated starch[J]. Radiation Physics and Chemistry,2020:173.
|
[31] |
WU Y, LUO X, LI W, et al. Green and biodegradable composite films with novel antimicrobial performance based on cellulose[J]. Food Chem,2016,197:250−256. doi: 10.1016/j.foodchem.2015.10.127
|
[32] |
SARWAR M S, NIAZI M B K, JAHAN Z, et al. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging[J]. Carbohydr Polym,2018,184:453−464. doi: 10.1016/j.carbpol.2017.12.068
|
1. |
骆春萍,蔡树芸,黄雅瑜,林米妮,郑海龙,杨光乐,张怡评. 岩藻多糖制备工艺及其在护肤品中的应用进展. 香料香精化妆品. 2025(02): 23-28+110 .
![]() | |
2. |
刘松,刘红全,李慧敏,徐程浩,王燕姿,藏颖. 拟微绿球藻胞内多糖提取条件优化及其生物活性研究. 食品科技. 2024(03): 233-242 .
![]() | |
3. |
刘欣雨,胡蔚然,李铮凯,吉玮,倪潇. 藻胶实验室:澎湃荧光海. 大学化学. 2024(05): 396-404 .
![]() | |
4. |
沈康,郭瑞成,徐天旭,王伟华. DEAE-52纤维素柱层析纯化处理对西梅可溶性膳食纤维的影响. 食品与发酵工业. 2024(17): 209-217 .
![]() | |
5. |
张田,黄雨洋,刘琳琳,吕铭守,朱颖,孙冰玉,朱秀清. 多糖对高水分挤压植物蛋白肉结构及品质影响的研究进展. 食品科学. 2024(22): 341-350 .
![]() | |
6. |
Changhui YAN,Mingxuan PAN,Lihua GENG,Quanbin ZHANG,Yadong HU,Jing WANG,Sujuan YE. A novel enzyme-assisted one-pot method for the extraction of fucoidan and alginate oligosaccharides from Lessonia trabeculata and their bioactivities. Journal of Oceanology and Limnology. 2024(06): 1998-2012 .
![]() |
|
7. |
唐天城,朱本伟,姚忠,孙芸,熊强. 石莼多糖及其寡糖结构、制备及活性的研究进展. 现代食品科技. 2023(05): 340-353 .
![]() | |
8. |
唐翠娥,周培源,刘延照,李艳. 基于原子力显微镜研究黄原胶分子结构的云母片处理方法优化. 食品工业科技. 2023(14): 60-66 .
![]() | |
9. |
邱智超,勾宇春,张志鹏,王宗抗,孟品品,周进,姜玥璐. 藻类资源在农业种植业中的应用研究进展. 农业资源与环境学报. 2023(04): 840-851 .
![]() | |
10. |
张琨霖,王贺琪,郭庆彬,刘欢欢,梁宏合,王乐,李贞景. 桑黄子实体多糖的提取工艺优化、结构解析及免疫活性分析. 食品工业科技. 2023(20): 93-100 .
![]() | |
11. |
黄卫红,董乐. 紫球藻胞外多糖酶解物的纯化、红外鉴定及其抗氧化活性. 泉州师范学院学报. 2023(05): 19-27 .
![]() | |
12. |
曾凡珂,潘蕾蔓,张祎,赖富饶,吴晖,张猛猛. 荸荠皮多糖的理化性质及抗氧化活性. 现代食品科技. 2022(03): 82-88+81 .
![]() | |
13. |
王朝群,杨燕,唐超,何希瑞. 天麻多糖提取分离方法和药理作用研究进展. 中国药事. 2022(04): 417-428 .
![]() | |
14. |
杨斯惠,向月,曹亚楠,任远航,彭镰心,时小东. 植物多糖的益生作用及其影响因素研究进展. 食品科学. 2022(11): 301-310 .
![]() | |
15. |
刘亚楠,李欢,蒋凡,傅玲琳,王彦波. 基于活性包装视角下的水产品保鲜机制研究进展. 食品科学. 2022(13): 285-291 .
![]() | |
16. |
陈超,谭书明,王画,杨笙,代晓桐. 刺梨及其活性成分对2型糖尿病小鼠糖脂代谢的影响. 食品科学. 2022(13): 146-154 .
![]() | |
17. |
郭建行,贾颂华,李博润,李珊珊,冀晓龙,刘延奇. 红海藻多糖提取、分离纯化及生物活性研究进展. 食品研究与开发. 2022(16): 216-224 .
![]() | |
18. |
孙艳宾,李宁,梁君玲,张慧婧,景大为,张川. 海藻酸钠提取工艺研究进展. 食品科技. 2022(08): 201-206 .
![]() | |
19. |
贾薇,余冬生,余养朝,冯占,胡明,张劲松,汪雯翰. 三相分离法制备金针菇提取物中多糖的理化性质及体外活性. 食用菌学报. 2022(05): 73-80 .
![]() | |
20. |
孔丽,朱月霞,周冰雪,刘志,薛旺迁,石锦峰,郑家勤,李姣姣,吉敬,秦昆明,董自波,沈金阳. 海蒿子多糖提取、纯化及其药理活性研究进展. 大连海洋大学学报. 2022(05): 894-902 .
![]() | |
21. |
高玥,许倩楠,蔡明刚,胡贤陈,田文静,陈海峰. 海洋来源药食同源品开发利用研究进展. 中草药. 2021(17): 5455-5464 .
![]() | |
22. |
陆伊俏,池海波,厉桂宁,陈纤,邱家港,余辉,方旭波,陈小娥. 可口革囊星虫体腔液多糖碱提工艺优化及其抗氧化性研究. 食品工业科技. 2021(19): 204-210 .
![]() | |
23. |
刘小杰,倪辉. 海藻多糖在乳品工业中的应用研究进展. 乳业科学与技术. 2021(06): 31-38 .
![]() | |
24. |
林晓娟,苏志琛,陈继承. 海带多糖的结构特征、生物活性及其应用. 现代食品. 2021(24): 49-52 .
![]() |