CHEN Linlin, FAN Tianjiao, LI Wei, et al. Determination of Iodine in Food by Gold Nanoparticles Modified Electrode Cyclic Voltammetry[J]. Science and Technology of Food Industry, 2022, 43(1): 288−294. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030386.
Citation: CHEN Linlin, FAN Tianjiao, LI Wei, et al. Determination of Iodine in Food by Gold Nanoparticles Modified Electrode Cyclic Voltammetry[J]. Science and Technology of Food Industry, 2022, 43(1): 288−294. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030386.

Determination of Iodine in Food by Gold Nanoparticles Modified Electrode Cyclic Voltammetry

More Information
  • Received Date: March 30, 2021
  • Available Online: November 05, 2021
  • In order to find a rapid, simple and sensitive method for determination of iodine in food, a gold nanoparticle modified electrode was constructed by cyclic voltammetry (CV) to detect iodine ion (I-). In situ reduction of gold nanoparticles (Mb@AuNPs) using methanobactin (Mb), and the self-assembled modified electrode was preparaed by electrodeposition. Mb@AuNPs was characterized by transmission electron microscope (TEM), the electrochemical behavior of iodine ion (I-) was investigated by CV. The optimized conditions for iodine ion detection were as follows: Electrodeposition scanning rate 0.11 V/s, number of scanning cycles 30, buffer concentration 0.05 mol/L, buffer pH 6.5. There was a good linear relationship between oxidation peak current and I- concentration in the range of 0.01~10.00 μmol/L, R2 was 0.9992. The detection limit was 2.88 nmol/L (S/N), and the quantitation limit was 9.60 nmol/L. The recoveries of iodine content in different foods were 96.22%~103.57%. The results show that the modified electrode has good precision, stability, reproducibility and anti-interference ability for the determination of I-, which meets the requirements of the determination method and can be used for the determination of I- in practical samples.
  • [1]
    OPAZO M C, CORONADO-ARRÁZOLA I, VALLEJOS O P, et al. The impact of the micronutrient iodine in health and diseases[J]. Critical Reviews in Food Science and Nutrition,2020,13(1):1−14.
    [2]
    OYUNCHIMEG D, BYAMBATOGTOKH B, YAMADA C. Activities and achievements in the elimination of iodine deficiency disorders[J]. International Congress,2004,1267(1):127−130.
    [3]
    MORSETH M S, AAKRE I, BARIKMO I, et al. High iodine content in local animal milk and risk of exceeding EFSA upper intake level for iodine among Saharawi women[J]. PloS One,2019,14(2):1−11.
    [4]
    ZIMMERMANN M B. Iodine and the iodine deficiency disorders[J]. Present Knowledge in Nutrition,2020,25(1):429−441.
    [5]
    NAMEKAR S B, LOKHANDE S P, JADHAV G R, et al. Estimation of Iodine content by iodometric titration and spectrophotometric evaluation method in commercially Available salts[J]. Indian Journal of Nutrition & Dietetics,2017,54(4):465−476.
    [6]
    HOU Wenli, CHEN Yuan, LU Qiujun, et al. Silver ions enhanced AuNCs fluorescence as a turn-off nanoprobe for ultrasensitive detection of iodide[J]. Talanta,2018,180(17):144−149.
    [7]
    JENNY N, LAWRENCE P, DONG S, et al. Simultaneous analysis of iodine and bromine species in infant formula using HPLC-ICP-MS[J]. Journal of AOAC International,2019,102(4):1199−1204. doi: 10.5740/jaoacint.18-0352
    [8]
    ARAYA M, SAMANTHA G, SEBASTIÁN P. Iodine and iodate determination by a new spectrophotometric method using N, N-dimethyl-p-phenylenediamine, validated in veterinary supplements and table salt[J]. Analytical Methods,2020,12(2):205−211. doi: 10.1039/C9AY02249J
    [9]
    TRÉSOR K M, STÉPHANIE P, MACOURS P, et al. Highly sensitive determination of iodide by ion chromatography with amperometric detection at a silver-based carbon paste electrode[J]. Talanta,2008,76(3):540−547. doi: 10.1016/j.talanta.2008.03.053
    [10]
    ESPADA-BELLIDO E, BI Z, SALAÜN P, et al. Determination of iodide and total iodine in estuarine waters by cathodic stripping voltammetry using a vibrating silver amalgam microwire electrode[J]. Talanta,2017,174(17):165−170.
    [11]
    NING Wang, LU Ga, JUN Ai. Synthesis of novel fluorescent copper nanomaterials and their application in detection of iodide ions and catalysis[J]. Analytical Methods,2018,11(1):44−48.
    [12]
    SONG Juanjuan, ZHAO Li, WANG Yesheng, et al. Carbon quantum dots prepared with chitosan for synthesis of CQDs/AuNPs for iodine ions detection[J]. Nanomaterials,2018,8(12):1043−1053. doi: 10.3390/nano8121043
    [13]
    LIU Xu, GAO Hui, SUN Dengming, et al. Determination of trace of iodide at a poly-l-methionine modified glassy carbon electrode[J]. Revue Roumaine De Chimie,2019,64(4):311−316. doi: 10.33224/rrch/2019.64.4.03
    [14]
    TITRETIR S, ERDOGDU G, KARAGZLER A. Determination of iodide ions at poly(3-methylthiophene)-modified electrode by differential pulse stripping voltammetry[J]. Journal of Analytical Chemistry,2006,61(6):592−595. doi: 10.1134/S1061934806060141
    [15]
    QIN Xia, WANG Huicai, MIAO Zhiying, et al. Synthesis of silver nanowires and their applications in the electrochemical detection of halide[J]. Talanta,2011,84(3):673−678. doi: 10.1016/j.talanta.2011.01.064
    [16]
    MASATAKE Haruta A, MASAKAZU Daté B. Advances in the catalysis of Au nanoparticles[J]. Applied Catalysis A:General,2001,222(1-2):427−437. doi: 10.1016/S0926-860X(01)00847-X
    [17]
    PENG Xiange, WAN Gengping, WU Lihong, et al. Peroxidase-like activity of Au@TiO2 yolk-shell nanostructure and its application for colorimetric detection of H2O2 and glucose[J]. Sensors & Actuators B Chemical,2018,257(10):166−177.
    [18]
    辛嘉英, 姜加良, 张帅, 等. 甲烷氧化菌素-铜配合物催化过氧化氢氧化对苯二酚[J]. 高等学校化学学报,2013,34(5):1233−1239. [XIN Jiaying, JIANG Jialiang, ZHANG Shuai, et al. Oxidation of hydroquinone by hydrogen peroxide catalyzed by methanogen copper complex[J]. Journal of chemistry of Colleges and Universities,2013,34(5):1233−1239. doi: 10.7503/cjcu20120793
    [19]
    张伟. 甲烷氧化菌素模拟SOD的光谱学与电化学研究[D]. 哈尔滨: 哈尔滨商业大学, 2018

    ZHANG Wei. Spectroscopic and electrochemical study of methane oxidation toxin simulating SOD [D]. Harbin: Harbin University of Commerce, 2018.
    [20]
    BEHLING L A, HARTSEL S C, LEWIS D E, et al. NMR, mass spectrometry and chemical evidence reveal a different chemical structure for methanobactin that contains oxazolone rings[J]. Journal of the American Chemical Society,2008,130(38):12604−12605. doi: 10.1021/ja804747d
    [21]
    陈林林, 韩可, 李伟, 等. 铬天青S法结合高效液相色谱法测定甲烷氧化菌素含量[J]. 食品工业科技,2019,40(13):148−153. [CHEN Linlin, HAN Ke, LI Wei, et al. Determination of methanotrophin by chrome azurol S method combined with high performance liquid chromatography[J]. Food Industry Science and Technology,2019,40(13):148−153.
    [22]
    刘丰源. 微量铜的甲烷氧化菌素功能化纳米金检测研究[D]. 哈尔滨: 哈尔滨商业大学, 2020

    LIU Fengyuan. Detection of trace copper by methanobactone functionalized gold nanoparticles [D]. Harbin: Harbin University of Commerce, 2020.
    [23]
    杨洋, 崔磊磊, 姚颖悟. 电沉积法制备二氧化铅电极的研究进展[J]. 电镀与精饰,2018,40(9):29−34. [YANG Yang, CUI Leilei, YAO Yingwu. Research progress of lead dioxide electrode prepared by electrodeposition[J]. Electroplating and Finishing,2018,40(9):29−34. doi: 10.3969/j.issn.1001-3849.2018.09.007
    [24]
    EVANS D H, O'CONNELL K M, PETERSEN R A, et al. Cyclic voltammetry[J]. Journal of Chemical Education,1983,60(4):290−293. doi: 10.1021/ed060p290
    [25]
    杨彦丽, 林立, 寇琳娜. 电感耦合等离子体质谱-离子色谱法检测食盐中的碘[J]. 分析化学,2010,38(9):1381−1381. [YANG Yanli, LIN Li, KOU Linna. Determination of iodine in salt by inductively coupled plasma mass spectrometry ion chromatography[J]. Analytical Chemistry,2010,38(9):1381−1381.
    [26]
    MACHADO A, MESQUITA R B R, OLIVEIRA S, et al. Development of a robust, fast screening method for the potentiometric determination of iodide in urine and salt samples[J]. Talanta,2017,167(6):688−694.
    [27]
    陈光, 寇琳娜, 周谙非, 等. 离子色谱-安培检测器测定食品中的碘[J]. 食品科学,2010,31(18):292−294. [CHEN Guang, KOU Lina, ZHOU Congfei, et al. Determination of iodine in food by ion chromatography with amperometric detector[J]. Food Science,2010,31(18):292−294.
    [28]
    周贤亚. 海带中碘含量的测定[J]. 广东化工,2018,45(13):276−276. [ZHOU Xianya. Determination of iodine content in kelp[J]. Guangdong Chemical Industry,2018,45(13):276−276. doi: 10.3969/j.issn.1007-1865.2018.13.130
    [29]
    XIN Jiaying, CHENG Dandan, ZHANG Lanxuan, et al. Methanobactin-mediated one-step synthesis of gold nanoparticles[J]. International Journal of Molecular Sciences,2013,14(11):21676−21688. doi: 10.3390/ijms141121676
    [30]
    窦博鑫, 辛嘉英, 王振兴, 等. 甲烷氧化菌素功能化金纳米层层自组装修饰电极上过氧化氢的催化还原[J]. 分子催化,2017,31(6):534−543. [DOU Boxin, XIN Jiaying, WANG Zhenxing, et al. Catalytic reduction of hydrogen peroxide on layer by layer self-assembled gold electrode functionalized with methanobactone[J]. Molecular Catalysis,2017,31(6):534−543.
    [31]
    赵燕荣. 基于电化学传感器的吗啡检测方法研究[D]. 苏州: 苏州大学, 2009: 21.

    ZHAO Yanrong. Study on detection method of morphine based on electrochemical sensor [D]. Suzhou : Suzhou University, 2009.
    [32]
    叶耘峰. 基于碳纳米金复合材料电化学检测BHA[J]. 食品工业,2020,41(11):293−296. [YE Yunfeng. Electrochemical detection of BHA based on carbon nano gold composite[J]. Food Industry,2020,41(11):293−296.
    [33]
    CHEN Huanyin, YANG Tao, LIU Faqian, et al. Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite[J]. Sensors and Actuators,2019,286(18):401−407.
    [34]
    JIGYASA, PRATIBHA, RAJPUT J K. Alkali metal (Na/K) doped graphitic carbon nitride (g-C3N4) for highly selective and sensitive electrochemical sensing of nitrite in water and food samples[J]. Journal of Electroanalytical Chemistry,2020,878(16):1572−1580.
    [35]
    中华人民共和国国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准食品中碘的测定: GB 5009.267-2020 [S].北京: 中国标准出版社, 2020

    National Health Commission of the People's Republic of China, State Administration of market supervision and administration. Determination of iodine in food safety national standard food: GB 5009.267-2020[S]. Beijing: China Standard Press, 2020.
    [36]
    CINCY J, MILJA T E, PRATHISH K P. Fabrication of a flexible carbon cloth based solid contact iodide selective electrode[J]. Analytical Methods,2017,9(20):2947−2956. doi: 10.1039/C7AY00733G
    [37]
    DANA V, NICOLETA P, GHEORGHE F C, et al. Potentiometric sensors for iodide and bromide based on Pt(II)-porphyrin[J]. Sensors,2018,18(7):2297−2314. doi: 10.3390/s18072297
    [38]
    LAZAROVA Y, YANNA I, SHTEREV T, et al. Highly sensitive electrochemical detection of iodate based on glassy carbon electrode modified with iridium oxide[J]. Monatshefte Fur Chemie,2018,149(11):1955−1962. doi: 10.1007/s00706-018-2275-y
    [39]
    任蓉. 碘的电化学研究及测定[D].淮北: 淮北师范大学, 2020.

    REN Rong. Electrochemical study and determination of iodine [D]. Huaibei: Huaibei Normal University, 2020.
  • Cited by

    Periodical cited type(4)

    1. 黄冬兰,胡心蕊,胡毅青,林炜棋. 色氨酸荧光猝灭法测定食品中碘离子含量. 广东化工. 2025(01): 148-150 .
    2. 王艳,包士雷,孙立瑞,窦博鑫,辛嘉英,张娜. 电化学技术在食品检测中的应用研究进展. 食品科学. 2024(03): 295-306 .
    3. 黎之贤,肖培龙,任雯婧,马永志,吾热力森·阔马力别克,宋延艳,张玉,陈兆慧,如仙古丽·加玛力. PEDOT类导电聚合物/碳纳米管/Pt复合材料的制备及其电催化. 广东化工. 2024(12): 21-24 .
    4. 谢桂芳,赖飞,王艺蓉,周雪丽,王晓鹭,蔡滔. 胶体金免疫层析法在食品快速检测中的应用研究进展. 食品安全导刊. 2023(32): 181-185 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (231) PDF downloads (18) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return