ZHANG Jun, ZHANG Sanshan, YE Dan, et al. Effects of Germination on the Content of Amino Acids and Anti-nutritional Factors of Sorghum Grain[J]. Science and Technology of Food Industry, 2022, 43(1): 87−92. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030365.
Citation: ZHANG Jun, ZHANG Sanshan, YE Dan, et al. Effects of Germination on the Content of Amino Acids and Anti-nutritional Factors of Sorghum Grain[J]. Science and Technology of Food Industry, 2022, 43(1): 87−92. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030365.

Effects of Germination on the Content of Amino Acids and Anti-nutritional Factors of Sorghum Grain

More Information
  • Received Date: March 29, 2021
  • Available Online: November 07, 2021
  • To improve the nutritional quality of sorghum and broaden its application in food industry, white sorghum grain was used as raw material for germination, and the changes of amino acid composition, γ-aminobutyric acid (GABA) content, glutamic acid decarboxylase (GAD) activity, phytase activity, phytic acid and tannin content during sorghum germination were explored. The results showed that with the prolonging of germination time, the total amount of amino acids of sorghum increased significantly, reaching the maximum value of 5.694 g/100 g at 60 h , which increased 28.50%; the content of lysine reached the maximum value of 0.157 g/100 g at 72 h after germination, increased by 21.71%; GAD activity was inhanced, and GABA content was increased, reaching the maximum value of 19.026 mg/100 g at 60 h, which increased nearly 5 times; The phytase activity also increased with the prolonging of germination time, which promoted the degradation of phytic acid, and the phytic acid content decreased from 94.85 mg/100 g to 52.44 mg/100 g, decreased by 44.71%; the tannin content decrease from 1.07% to 0.14%, decreased by 86.92%. In summary, germination can significantly increase the nutritional composition of sorghum and reduce the content of anti-nutritional factors to enhance the nutritional value of sorghum.
  • [1]
    姜鹏, 李忍, 戴凌燕, 等. 浸泡和微波处理对三种高粱熟化的影响[J]. 食品工业科技,2021,42(8):70−74. [JIANG P, LI R, DAI L Y, et al. Effects of soaking and microwave treatment on maturation of three kinds of sorghum[J]. Science and Technology of Food Industry,2021,42(8):70−74.
    [2]
    MORAES R A, OLIVEIRA F D, QUEIROZ V, et al. Domestic processing effects on antioxidant capacity, total phenols and phytate content of sorghum[J]. Current Nutrition & Food Science,2020,4(16):501−507.
    [3]
    HAHN D H, ROONEY L W, EARP C F. Tannins and phenols of sorghum[J]. Cereal Foods World,1984,29(12):776−779.
    [4]
    ABDELHALIM Tilal Sayed, KAMAL Nasrein Mohamed, HASSAN Amro B. Nutritional potential of wild sorghum: Grain quality of Sudanese wild sorghum genotypes (Sorghum bicolor L. Moench)[J]. Food Science & Nutrition,2019,7(4):1529−1539.
    [5]
    吴凤凤. 发芽对糙米主要营养成分、生理功效和加工特性的影响[D]. 无锡: 江南大学, 2013.

    WU F F. The effect of germination on the main nutrients, physiological functions and processing characteristics of brown rice[D]. Wuxi: Jiangnan University, 2013.
    [6]
    高芬, 王宇婷, 石磊. 荞麦发芽过程中植酸含量变化的研究[J]. 农产品加工,2019(13):59−61, 66. [GAO F, WANG Y T, SHI L. Study on the change of phytic acid content in buckwheat during germination[J]. Agricultural Products Processing,2019(13):59−61, 66.
    [7]
    HUSSAIN S Z, JABEEN R, NASEER B, et al. Effect of soaking and germination conditions on γ-aminobutyric acid and gene expression in germinated brown rice[J]. Food Biotechnology,2020,34(2):132−150. doi: 10.1080/08905436.2020.1744448
    [8]
    NISHIMURA M, YOSHIDA S I, HARAMOTO M, et al. Effects of white rice containing enriched gamma-aminobutyric acid on blood pressure[J]. Journal of Traditional & Complementary Medicine,2016,6(1):66−71.
    [9]
    李科, 俞兰秀, 刘小雨, 等. γ-氨基丁酸改善睡眠作用机制的研究进展[J]. 食品工业科技,2019,40(14):353−358. [LI K, YU L X, LIU X Y, et al. Research progress on the mechanism of γ-aminobutyric acid in improving sleep[J]. Science and Technology of Food Industry,2019,40(14):353−358.
    [10]
    张宿. γ-氨基丁酸的生理作用及应用[J]. 安徽农业科学,2019,47(18):1−9,16. [ZHANG S. Physiological function and application of γ-aminobutyric acid[J]. Journal of Anhui Agricultural Sciences,2019,47(18):1−9,16. doi: 10.3969/j.issn.0517-6611.2019.18.001
    [11]
    YANG H Y, XING R G, LIU S, et al. Rescuing fluoride-induced damages in liver with gamma aminobutyric acid[J]. Biochemical and Biophysical Research Communications,2017,491(1):19−24. doi: 10.1016/j.bbrc.2017.07.015
    [12]
    易翠平, 李艳, 姚辰, 等. 发芽白高粱的工艺优化及主要营养成分分析[J]. 中国粮油学报,2015,30(6):27−31, 42. [YI C P, LI Y, YAO C, et al. Optimization of germinating white sorghum technology and analysis of main nutrients[J]. Journal of the Chinese Cereals and Oils Association,2015,30(6):27−31, 42. doi: 10.3969/j.issn.1003-0174.2015.06.006
    [13]
    MOHAMED F M. 发芽高粱及其与小麦混合粉面包的功能特性[D]. 南京: 南京农业大学, 2013.

    MOHAMED F M. Functional characteristics of germinated sorghum and its mixed wheat flour bread[D]. Nanjing: Nanjing Agricultural University, 2013.
    [14]
    曹晶晶, 顾丰颖, 罗其琪, 等. 发芽糙米γ-氨基丁酸形成的谷氨酸脱羧酶活性与底物变化的相关性分析[J]. 食品科学,2018,39(16):47−52. [CAO J J, GU F Y, LUO Q Q, et al. Correlation analysis of glutamate decarboxylase activity formed by germinated brown rice γ-aminobutyric acid and substrate changes[J]. Food Science,2018,39(16):47−52. doi: 10.7506/spkx1002-6630-201816008
    [15]
    LI C , OH S G , LEE D H , et al. Effect of germination on the structures and physicochemical properties of starches from brown rice, oat, sorghum, and millet[J]. International Journal of Biological Macromolecules, 2017, 105(Pt 1).
    [16]
    MOHAN B H, MALLESHI N G, KOSEKI T. Physico-chemical characteristics and non-starch polysaccharide contents of Indica and Japonica brown rice and their malts[J]. LWT-Food Science and Technology,2010,43(5):784−791. doi: 10.1016/j.lwt.2010.01.002
    [17]
    王斌. 稻谷发芽富集γ-氨基丁酸及大米加工技术研究[D]. 武汉: 华中农业大学, 2018.

    WANG B. Research on rice germination and enrichment of γ-aminobutyric acid and rice processing technology[D]. Wuhan: Huazhong Agricultural University, 2018.
    [18]
    YANG R, WANG P, ELBALOULA M F, et al. Effect of germination on main physiology and biochemistry metabolism of sorghum seeds[J]. Bioscience Journal,2016,32(2):378−383.
    [19]
    张海龙, 陈迎迎, 杨立新, 等. γ-氨基丁酸对植物生长发育和抗逆性的调节作用[J]. 植物生理学报,2020,56(4):600−612. [ZHANG H L, CHEN Y Y, YANG L X, et al. Regulatory effects of γ-aminobutyric acid on plant growth and stress resistance[J]. Acta Plant Physiology,2020,56(4):600−612.
    [20]
    KHWANCHAI P, CHINPRAHAST N, PICHYANGKURA R, et al. Gamma-aminobutyric acid and glutamic acid contents, and the GAD activity in germinated brown rice (Oryza sativa L.): Effect of rice cultivars[J]. Food Science and Biotechnology,2014,23(2):373−379. doi: 10.1007/s10068-014-0052-1
    [21]
    李喜明. 黄腐酸与γ-氨基丁酸联合盐胁迫促进单针藻Monoraphidium sp. QLY-1油脂积累相关代谢机制的研究[D]. 昆明: 昆明理工大学, 2020.

    LI X M. Study on the metabolic mechanism of fulvic acid and γ-aminobutyric acid combined with salt stress to promote lipid accumulation in Mononaphidium sp. QLY-1[D]. Kunming: Kunming University of Science and Technology, 2020.
    [22]
    DENNISON K L. Glutamate-gated calcium fluxes in arabidopsis[J]. Plant Physiology,2000,124(4):1511−1514. doi: 10.1104/pp.124.4.1511
    [23]
    王姗姗, 刘小娇, 胡赟, 等. 植物中γ-氨基丁酸的代谢及富集机制[J]. 安徽农业科学,2020,48(24):9−12. [WANG S S, LIU X J, HU Y, et al. Metabolism and enrichment mechanism of γ-aminobutyric acid in plants[J]. Journal of Anhui Agricultural Sciences,2020,48(24):9−12. doi: 10.3969/j.issn.0517-6611.2020.24.003
    [24]
    HASSAN S, AHMAD N, AHMAD T, et al. Microwave processing impact on the phytochemicals of sorghum seeds as food ingredient[J]. Journal of Food Processing and Preservation,2019,43(5):e13924. doi: 10.1111/jfpp.13924
    [25]
    耿雪营, 郭藏, 米生权, 等. 单宁的血糖调节活性功能研究进展[J]. 食品与发酵工业,2021,47(7):301−306. [GENG X Y, GUO Z, MI S Q, et al. Research progress on the blood glucose regulating activity of tannins[J]. Food and Fermentation Industries,2021,47(7):301−306.
    [26]
    TEIXEIRA L, PINTO C, KESSLER A, et al. Effect of partial substitution of rice with sorghum and inclusion of hydrolyzable tannins on digestibility and postprandial glycemia in adult dogs[J]. PLoS One,2019,14(5):e020886.
    [27]
    CLAVER I P, NICOLE M. The Effect of soaking with wooden ash and malting upon some nutritional properties of sorghum flour used for impeke, a traditional burundian malt-based sorghum beverage[J]. Agricultural Sciences in China,2011,10(11):1801−1811. doi: 10.1016/S1671-2927(11)60180-6
    [28]
    GEORGET D, ELKHALIFA A, PETER S B. Structural changes in kafirin extracted from a white type II tannin sorghum during germination[J]. Journal of Cereal Ence,2012,55(2):106−111. doi: 10.1016/j.jcs.2011.10.007
    [29]
    SAMAILA J, UGOCHUKWU N T, JOEL N, et al. Influence of fermentation and germination on some bioactive components of selected lesser legumes indigenous to Nigeria[J]. Journal of Agriculture and Food Research,2020,2:1−10. doi: 10.26480/rfna.01.2021.01.03
    [30]
    EHSAN F, SADAT M R, ALALEH Z, et al. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products[J]. Food Research International,2021,143(1):110284.
    [31]
    丁俊胄, 刘贞, 赵思明, 等. 糙米发芽过程中内源酶活力及主要成分的变化[J]. 食品科学,2011,32(11):29−32. [DING J H, LIU Z, ZHAO S M, et ai. Changes in endogenous enzyme activity and main components during the germination of brown rice[J]. Food Science,2011,32(11):29−32.
  • Cited by

    Periodical cited type(13)

    1. 赖多,王德林,邵雪花,秦健,庄庆礼,肖维强. 余甘子果实斑点病菌LAMP可视化检测方法的建立. 西北农林科技大学学报(自然科学版). 2025(01): 69-79+90 .
    2. 吴紫彬,邹知静,刘亚男,吴雪辉. 基于模糊数学和响应面法优化余甘子果汁饮料生产工艺. 粮食与油脂. 2024(02): 100-105 .
    3. 姜加良,王雪丽,韩颖,张馨延. 响应面法优化石榴皮百香果果皮复合饮料发酵工艺及抗疲劳功能评价. 中国食品添加剂. 2024(03): 220-228 .
    4. 赖多,王德林,周国昌,邵雪花,秦健,庄庆礼,蔡时可,肖维强. 余甘子斑点病病原菌鉴定、生物学特性及防治药剂筛选. 南方农业学报. 2024(02): 479-488 .
    5. 唐勇琛,张洪平,毛桂福,樊玲凤,杨玉竹,张亚洲. 心脉舒一号口服液质量标准提升研究. 中国药业. 2024(14): 80-83 .
    6. 朱静,陈顺心,张一鸣,陈亚蓝. 不同酵母对圣女果果酒品质及挥发性风味物质的影响. 中国酿造. 2024(09): 177-184 .
    7. 刘一鸣,张运运. 酸枣果肉苦荞复合运动饮料的研制及其抗疲劳活性研究. 食品科技. 2024(12): 79-88 .
    8. 王紫菱,劳嘉,钟灿,贺炜,张水寒,金剑. 食疗中草药乳酸菌发酵与生物转化研究进展与展望. 食品与发酵工业. 2023(08): 318-324+334 .
    9. 蔡宁,于傲,佟永清. 百香果皮酵素饮料研制及对运动耐力的影响. 食品与发酵工业. 2023(10): 230-236 .
    10. 陈来凤,倪琳钰,邓成林,罗亚楠,李海燕,丰贵江,林秋叶. 乳酸菌发酵天麻口服液工艺优化. 食品工业科技. 2023(15): 193-202 . 本站查看
    11. 权树琳,张班,徐瑞豪,王慧慧. 灰树花子实体多糖的结构特性分析及提高小鼠的运动耐力. 现代食品科技. 2023(10): 25-34 .
    12. 雷露,余波,周景瑞,王川南,吴天祥. 天麻、苦荞醇提物对灰树花胞外多糖合成酶类的影响及天麻苦荞醇提物复配发酵液的抗疲劳作用. 现代食品科技. 2022(10): 33-39 .
    13. 李春峰,索文涛. β-环糊精-高良姜素复合物的制备及对小鼠运动疲劳的影响. 中国食品添加剂. 2022(12): 154-161 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (210) PDF downloads (17) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return