WU Yong, WANG Zeyu, ZHOU Na, et al. Screening and Mechanism of Inhibiting α-Glucosidase Activity Fraction from Sparassis crispa[J]. Science and Technology of Food Industry, 2021, 42(22): 93−98. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030320.
Citation: WU Yong, WANG Zeyu, ZHOU Na, et al. Screening and Mechanism of Inhibiting α-Glucosidase Activity Fraction from Sparassis crispa[J]. Science and Technology of Food Industry, 2021, 42(22): 93−98. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030320.

Screening and Mechanism of Inhibiting α-Glucosidase Activity Fraction from Sparassis crispa

More Information
  • Received Date: March 28, 2021
  • Available Online: September 13, 2021
  • Under the guidance of inhibition α-glucosidase activity in vitro, the inhibition effect and mechanism of inhibiting α-glucosidase activity of different polar components obtained from Sparassis crispa were investigated. The extracts of S. crispa were obtained by the ultrasonic-assisted extraction methods with two different ethanol concentrations. The different polar components were obtained by the extraction and the macroporous adsorption resin. All of these fractions were screened by the α-glucosidase inhibitory activity in vitro, and the active fractions were obtained. Half maximal inhibitory concentration(IC50) was calculated, and the mechanism of action was investigated by enzymatic kinetics and Lineweaver-Burk methods. The results showed that the inhibition of α-glucosidase activity was strongest in the 60% ethanol eluting fraction of the extract of 50% ethanol, with IC50 value of 0.0927±0.0600 mg/mL, which was equivalent to the activity of acarbose(IC50: 0.0795±0.0200 mg/mL). It was competitive and non-competitive mixed inhibition type. This study identified the avtivity fraction of inhibiting α-glucosidase in the extract of S. crispa, and discussed the mechanism of action. It would provide a theoretical and scientific basis for developing hypoglycemic products for S. crispa in the future.
  • [1]
    BANG S, CHAE H, LEE C, et al. New aromatic compounds from the fruiting body of Sparassis crispa (Wulf.) and their inhibitory activities on proprotein convertase subtilisin/kexin type 9 mRNA expression[J]. Journal of Agricultural and Food Chemistry,2017,65(30):6152−6157. doi: 10.1021/acs.jafc.7b02657
    [2]
    HIROKAZU K, KANAKO H, SHINJI T, et al. Novel bioactive compound from the Sparassis crispa mushroom[J]. Bioscience Biotechnology and Biochemistry,2007,71(7):1804−1806. doi: 10.1271/bbb.70192
    [3]
    高渊, 杨亚茹, 常明昌, 等. 基于代谢组学研究绣球菌多糖对高脂血症大鼠的降血脂作用[J]. 食品科学,2020,42(11):168−175. [GAO Y, YANG Y R, CHANG M C, et al. Metabonomic study on hypolipidemic effect of Sparassis crispa polysaccharides on hyperlipidemia rats[J]. Food Science,2020,42(11):168−175. doi: 10.7506/spkx1002-6630-20200513-146
    [4]
    OHNO N, MIURA N N, NAKAJIMA M, et al. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa[J]. Biological & Pharmaceutical Bulletin,2000,23(7):866−872.
    [5]
    YAMAMOTO K, KIMURA T. Dietary Sparassis crispa (hanabiratake) ameliorates plasma levels of adiponectin and glucose in type 2 diabetic mice[J]. Journal of Health Science,2010,56(5):541−546. doi: 10.1248/jhs.56.541
    [6]
    CHOIL W S, SHIN P G, BOK Y Y, et al. Anti-inflammatory effects of Sparassis crispa extracts[J]. Journal of Mushroom Science and Production,2013,11(1):46−51. doi: 10.14480/JM.2013.11.1.046
    [7]
    陈洋炜, 郑莛予, 高云杉, 等. 绣球菌低分子量多糖的制备工艺优化及其分子量的测定[J]. 食品工业科技,2020,41(4):161−165,178. [CHEN Y W, ZHENG T Y, GAO Y S, et al. Optimization of preparation process and molecular weight determination of low molecular weight polysaccharide from Sparassis crispa[J]. Science and Technology of Food Industry,2020,41(4):161−165,178.
    [8]
    黄子建. 响应面法优化绣球菌副产物多糖提取工艺的研究[J]. 福建农业科技,2019(10):21−26. [HANG Z J. Study on optimization of extraction process of polysaccharides from byproducts of Sparassis crispa by using response surface method[J]. Fujian Agricultural Science and Technology,2019(10):21−26.
    [9]
    杨亚茹, 郝正祺, 常明昌, 等. 绣球菌酸性多糖的分离纯化、结构鉴定及抗氧化活性研究[J]. 食用菌学报,2019,26(3):105−112. [YANG Y R, HAO Z Q, CHANG M C, et al. Isolation, purification, structural identification and antioxidant activity of acidic polysaccharide in Sparassis crispa[J]. Acta Edulis Fungi,2019,26(3):105−112.
    [10]
    林衍铨. 绣球菌的生产现状与保健功效[J]. 食用真菌,2021,29(1):16−19. [LIN Y Q. Production status and health effect of Sparassis crispa[J]. Edible and Medicinal Mushrooms,2021,29(1):16−19.
    [11]
    丁有红, 崔岚, 苏健, 等. 中老年人群高三酰甘油腰围表型与空腹血糖受损、糖尿病的关系研究[J]. 预防医学,2021,33(2):125−129. [DING Y H, CUI L, SU J, et al. Association of hypertriglyceridemic waist phenotype with impaired fasting glucose and diabetes in middle-aged and elderly population[J]. Preventive Medicine,2021,33(2):125−129.
    [12]
    张义朋, 何奔. 2型糖尿病中降糖药与心力衰竭风险[J]. 临床心血管病杂志,2021,37(1):16−21. [ZHANG Y P, HE B. Antidiabetic agent and heart failure risk in type 2 diabetes mellitus[J]. Journal of Clinical Cardiology,2021,37(1):16−21.
    [13]
    孙凯峰, 包怡红. 黑木耳发酵产物对HepG2细胞脂质代谢及糖代谢的影响[J]. 中国食品学报,2021,21(1):30−37. [SUN K F, BAO Y H. Fermentation products of Auricularia auricular on lipid metabolism and glucose metabolism in HepG2 cells[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(1):30−37.
    [14]
    慎凯峰, 刘奇, 朱琦. 复方青钱柳、铁皮石斛、灵芝提取物降糖功能研究[J]. 海峡药学,2020,32(6):18−21. [SHEN K F, LIU Q, ZHU Q. Study on the auxiliary hypoglycemic efficacy of combined extract of Cyclocarya paliurus, Ganoderma, and Dendrobium[J]. Strait Pharmaceutical Journal,2020,32(6):18−21. doi: 10.3969/j.issn.1006-3765.2020.06.006
    [15]
    CHATTERJEE S, KHUNTI K, DAVIES M J. Type 2 diabetes[J]. American Journal of Plant Sciences,2017,389:2239−2251.
    [16]
    苏青. α-葡萄糖苷酶抑制剂与常见药物联用的不良反应[J]. 药品评价,2018,15(23):5−8. [SU Q. Adverse drug reactions of α-glucosidase inhibitors combined with other drugs[J]. Drug Evaluation,2018,15(23):5−8.
    [17]
    孙静. 胰岛素联合α-葡萄糖苷酶抑制剂治疗老年2型糖尿病的临床疗效[J]. 北方药学,2020,17(5):100−101. [SUN J. Clinical efficacy of insulin combined with α-glucosidase inhibitors in the treatment of elderly type 2 diabetes mellitus[J]. Bei Fang Yao Xue,2020,17(5):100−101. doi: 10.3969/j.issn.1672-8351.2020.05.074
    [18]
    阎成炟, 郭崇真, 林建阳. 新型α-葡萄糖苷酶抑制剂筛选及药理作用研究进展[J]. 药物评价研究,2021,44(2):440−445. [YAN C D, GUO C Z, LIN J Y. Research progress of screen and pharmacological effect for novel α-glucosidase[J]. Drug Evaluation Research,2021,44(2):440−445.
    [19]
    程鹏, 李玉慧, 郭瑞臣. 阿卡波糖药理研究进展及其临床应用[J]. 药学研究,2020,39(2):107−110. [CHENG P, LI Y H, GUO R C. Progressin pharmacological research of acarbose and its clinical applications[J]. Journal of Pharmaceutical Research,2020,39(2):107−110.
    [20]
    中岛三博, 长岛公司. 一种生理机能活性剂及其应用: 中国, 111700920 A[P]. 2020-09-25.

    NAKAJIMA M, NAGASHIMA K. A kind of physiological surfactant and application thereof: CN, 111700920 A[P]. 2020-09-25.
    [21]
    SON S H, CHO M G, PARK H R. Sparassis crispa fruit body dry powder with antidiabetic effect and its manufacturing method: KR, 2013067927 A[P]. 2013-06-25.
    [22]
    SATO Y, UNO T, IMAI K. The physiologically active composition derived from Sparassis crispa: JP, 2008230991 A[P]. 2008-10-02.
    [23]
    沙纯荣. 一种绣球菌饮品: 中国, 101305826 A[P]. 2008-11-19.

    SHA C R. A beverage containing Sparasis crispa (Wulf) Fr. for treating diabetes, nephropathy and gastrointestinal disorders: CN, 101305826 A[P]. 2008-11-19.
    [24]
    YOSHIKAWA K, HASHIMOTO T, HIRASAWA A. Unsaturated fatty acids derived from Sparassis crispa fruiting body and/or mycelium for inhibiting diabetes mellitus: JP, 2010059106 A[P]. 2010-03-18.
    [25]
    KANG W Y, ZHANG L. α-glucosidase inhitory of extracts of five genera of Gesneriacceae[J]. Natural Product Research Development,2010,22:122−125.
    [26]
    温正辉, 凌梅娣, 余思萍, 等. 蒲桃不同药用部位乙醇提取物对α-葡萄糖苷酶和α-淀粉酶活性的抑制作用研究[J]. 中国药房,2019,30(23):3246−3251. [WEN Z H, LING M D, YU S P, et al. Study on inhibitory effects of ethanol extract of different medicinal parts from Syzygium jambos on the activities of α-glycosidase and α-amylase[J]. China Pharmmcy,2019,30(23):3246−3251.
    [27]
    赖小燕, 姜泽东, 倪辉. 茶花粉黄酮对α-葡萄糖苷酶抑制作用的研究[J]. 食品工业科技,2016,37(5):353−357. [LAI X Y, JIANG Z D, NI H, et al. Study on the inhibitory effect of flavonoids in camellia powder on α-glucosidase[J]. Science and Technology of Food Industry,2016,37(5):353−357.
    [28]
    DENG Y T, LIN S Y, SHYUR L F, et al. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice[J]. Food Funct,2015,6(5):1539−1542. doi: 10.1039/C4FO01025F
    [29]
    肖会芝. 天然多酚对胰蛋白酶和α-葡萄糖苷酶抑制机制的研究[D]. 重庆: 重庆大学, 2016.

    XIAO H Z. Comparative evaluation of natural polyphenols inhibiting α-glucosidase and trypsin[D]. Chongqing: Chongqing University, 2016.
    [30]
    冯学珍, 覃慧逢, 赵丽婷, 等. 食用海藻中α-葡萄糖苷酶抑制剂的筛选及抑制动力学[J]. 食品工业,2019,40(6):195−198. [FENG X Z, QIN H F, ZHAO L T, et al. Screening of fraction with inhibiting activity against α-glucosidase from edible algal and its inhibition kinetic behaviors[J]. Food Industry,2019,40(6):195−198.
  • Cited by

    Periodical cited type(2)

    1. 王丽莎,胡雪敏,青艳,吴苹,杨慧芳. 罗布麻的主要化学成分与作用及其在纺织领域的应用. 毛纺科技. 2024(09): 137-143 .
    2. 王丽君,马国财,韩爱芝,李雅雯,轩正英. 新疆芜菁茎部内生菌的分离鉴定. 中国瓜菜. 2018(04): 19-23 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (200) PDF downloads (14) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return