Citation: | HUANG Siyuan, LUO Jiayuan, YE Junfeng, et al. Optimization of Germination Conditions for γ-Aminobutyric Acid Accumulation and Component Analysis of Black Tartary Buckwheat[J]. Science and Technology of Food Industry, 2021, 42(24): 144−150. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030277. |
[1] |
LIU Y, CAI C, YAO Y, et al. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing[J]. Journal of the Science of Food and Agriculture,2019,99(12):5565−5576. doi: 10.1002/jsfa.9825
|
[2] |
蒲升惠, 高颖, 赵志峰, 等. 苦荞中活性物质及其保健功效研究进展[J]. 食品工业科技,2019,40(8):331−336. [PU S H, GAO Y, ZHAO Z F, et al. Research progress on bioactive components and health benefits of tartary buckwheat[J]. Food Industry Science and Technology,2019,40(8):331−336.
|
[3] |
LEE D, JANG I S, YANG K E, et al. Effect of rutin from tartary buckwheat sprout on serum glucose-lowering in animal model of type 2 diabetes[J]. Acta Pharmaceutica,2016,66(2):297−302. doi: 10.1515/acph-2016-0021
|
[4] |
PENG W, HU C, SHU Z, et al. Antitumor activity of tatariside F isolated from roots of Fagopyrum tataricum (L. ) Gaertn against H22 hepatocellular carcinoma via up-regulation of p53[J]. Phytomedicine:International Journal of Phytotherapy and Phytopharmacology,2015,22(7−8):730−736. doi: 10.1016/j.phymed.2015.05.003
|
[5] |
宁亚维, 马梦戈, 杨正, 等. γ-氨基丁酸的制备方法及其功能食品研究进展[J]. 食品与发酵工业,2020,46(23):238−247. [NING Y W, MA M G, YANG Z, et al. Research progress in the enrichment process and functional foods of γ-aminobutyric acid[J]. Food and Fermentation Industries,2020,46(23):238−247.
|
[6] |
KIM H. Functional foods and the biomedicalisation of everyday life: A case of germinated brown rice[J]. Sociology of Health & Illness,2013,35(6):842−857.
|
[7] |
高立城, 夏美娟, 白文明, 等. 甜荞和苦荞萌发过程中营养成分分析[J]. 营养学报,2019,41(6):617−619. [GAO L C, XIA M J, BAI W M, et al. Nutritional analysis of common buckwheat and tartary buckwheat during germination[J]. Journal of Nutrition,2019,41(6):617−619. doi: 10.3969/j.issn.0512-7955.2019.06.021
|
[8] |
CHAROENTHAIKIJ P, JANGCHUD K, JANGCHUD A, et al. Germination conditions affect selected quality of composite wheat-germinated brown rice flour and bread formulations[J]. Journal of Food Science,2010,75(6):312−318. doi: 10.1111/j.1750-3841.2010.01712.x
|
[9] |
汪建飞. 微波处理下苦荞麦萌发及其芽苗抗氧化活性的研究[D]. 芜湖: 安徽工程大学, 2019.
WANG J F. Study on germination of tartary buckwheat and antioxidant activity in its sprouts under microwave treatent[D]. Wuhu: Anhui Polytechnic Univercity, 2019.
|
[10] |
JIANG S, LIU Q, XIE Y, et al. Separation of five flavonoids from tartary buckwheat(Fagopyrum tataricum (L. ) Gaertn) grains via off-line two dimensional high-speed counter-current chromatography[J]. Food Chemistry,2015:186.
|
[11] |
李婷玉, 杜艳, 陈正行, 等. 胁迫萌发对青稞籽粒中β-葡聚糖和γ-氨基丁酸含量的影响[J]. 中国粮油学报,2021,36(6):30−35. [LI T Y, DU Y, CHEN Z X, et al. Effect of highland barley seed germination under stress on contents of β-glucan and γ-aminobutyric acid[J]. Chinese Journal of Cereals and Oils,2021,36(6):30−35. doi: 10.3969/j.issn.1003-0174.2021.06.006
|
[12] |
蒋振晖. Ca2+和通气处理对糙米发芽过程中主要物质变化的影响及γ-氨基丁酸富集技术研究[D]. 南京: 南京农业大学, 2003.
JIANG Z H. Effect of Ca2+ and aerating treatment on some essential substances of and GABA enrichment technology in germinating brown rice[D]. Nanjing: Nanjing Agricultural University, 2003.
|
[13] |
郑向华, 陈荣, 叶宁, 等. 温度和时间对发芽糙米中γ-氨基丁酸含量的影响[J]. 中国粮油学报,2009,24(9):1−4. [ZHENG X H, CHEN R, YE N, et al. Effects of temperature and time on γ-GABA content of germinated brown rice[J]. Chinese Journal of Cereals and Oils,2009,24(9):1−4.
|
[14] |
王维坚, 马中苏, 孟凡刚, 等. 发芽糙米浸泡工艺的研究[J]. 吉林粮食高等专科学校学报,2003,18(4):7−10. [WANG W J, MA Z S, MENG F G, et al. A study on soaking processing in the production of the germinated brown rice[J]. Journal of Jilin Grain College,2003,18(4):7−10.
|
[15] |
巢晓玲, 黎扬辉, 敬思群, 等. 油莎豆发芽前后营养成分及多糖生物活性的变化[J]. 食品工业科技,2021,42(12):327−333. [CHAO X L, LI Y H, JING S Q, et al. Analysis of nutrient composition and bioactivity of cyperus esculentus (C. esculentus L. ) before and after germination[J]. Science and Technology of Food Industry,2021,42(12):327−333.
|
[16] |
崔江明, 周海龙, 马利华. 发芽、发酵对燕麦营养性及抗氧化性的影响[J]. 食品科技,2021,46(2):130−134. [CUI J M, ZHOU H L, MA L H. Effects of germination and fermentation on nutritional and antioxidant properties of oat[J]. Food Science and Technology,2021,46(2):130−134.
|
[17] |
郑晨曦, 郝建雄, 宋曙辉, 等. 微酸性电解水对苦荞芽活性成分及抗氧化能力的影响[J]. 食品科学,2018,39(4):20−25. [ZHENG C X, HAO J X, SONG S H, et al. Effect of slightly acidic electrolyzed water on the bioactive compounds and antioxidant activity of tartary buckwheat sprouts[J]. Food Science,2018,39(4):20−25. doi: 10.7506/spkx1002-6630-201804004
|
[18] |
JIANG S, LIU Q, XIE Y, et al. Separation of five flavonoids from tartary buckwheat(Fagopyrum tataricum (L. ) Gaertn) grains via off-line two dimensional high-speed counter-current chromatography[J]. Food Chemistry,2015,186:153−159. doi: 10.1016/j.foodchem.2014.08.120
|
[19] |
姜秀杰, 张桂芳, 张东杰. 真空协同发芽富集豌豆γ-氨基丁酸的工艺优化研究[J]. 食品科技,2020,45(5):58−63. [JIANG X J, ZHANG G F, ZHANG D J. Optimization of vacuum co-germination process for enrichment of γ-aminobutyric acid in pea[J]. Food Science and Technology,2020,45(5):58−63.
|
[20] |
杨丽, 肖斌, 肖登荣, 等. 富氢水发芽糙米加工工艺及其品质研究[J/OL]. 食品工业科技, 2021, 42(9): 145-153.
YANG L, XIAO B, XIAO D R, et al. Study on processing technology and quality of germinated brown rice with hydrogen rich water [J/OL]. Food Science and Technology, 2020, 45(5): 58-63.
|
[21] |
梅婵, 方勇, 裴斐, 等. 发芽糙米铁生物强化的正交试验优化及其形态分析[J]. 食品科学,2016,37(6):52−57. [MEI C, FANG Y, PEI F, et al. Optimization and speciation analysis of germinated brown rice iron bioenhancement by orthogonal experiment[J]. Food Science,2016,37(6):52−57. doi: 10.7506/spkx1002-6630-201606009
|
[22] |
王嘉怡, 潘姝璇, 夏陈, 等. 发芽糙米米糠营养成分和γ-氨基丁酸分析及缓解体力疲劳功效[J]. 食品科学,2019,40(1):177−182. [WANG J Y, PAN S X, XIA C, et al. Nutritional composition, gamma-aminobutyric acid content and antifatigue activity of germinated brown rice bran[J]. Food Science,2019,40(1):177−182. doi: 10.7506/spkx1002-6630-20170711-165
|
[23] |
马先红, 魏玉玲, 李京徽, 等. 发芽处理对谷物主要成分含量变化的影响[J]. 保鲜与加工,2021,21(6):145−150. [MA X H, WEI Y L, LI J H. Effect of germination on main components of grain[J]. Storage and Process,2021,21(6):145−150. doi: 10.3969/j.issn.1009-6221.2021.06.023
|
[24] |
马先红, 温钢. 发芽对玉米营养成分的影响[J]. 粮食与油脂,2017,30(11):1−4. [MA X H, WEN G. Effect of germination on nutrition component of maize[J]. Grain and Fats,2017,30(11):1−4. doi: 10.3969/j.issn.1008-9578.2017.11.001
|
[25] |
REN S, SUN J. Changes in phenolic content, phenylalanine ammonia-lyase(PAL) activity, and antioxidant capacity of two buckwheat sprouts in relation to germination[J]. Journal of Functional Foods,2014,7(2014):298−304.
|
[26] |
庞萌萌. 苦荞添加微量元素发芽后肌醇等化学成分变化及降糖活性研究[D]. 济南: 山东中医药大学, 2018.
PANG M M. Study on changes of inositol and other chemical components and the activity of decreasing blood glucose after germination of buckwheat with added trace elements[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2018.
|
1. |
朱秀娟,孙娜,陈文东,聂龙英,王林林. 核桃花护色保脆技术研究. 宁夏师范学院学报. 2022(07): 52-58 .
![]() | |
2. |
王纪辉,曾亚军,侯娜,耿阳阳,胡伯凯,刘亚娜,张时馨,杨光. 曲面响应法优化核桃雄花多酚提取工艺及其组成与抗氧化活性分析. 南方农业学报. 2022(10): 2997-3008 .
![]() |