HUANG Siyuan, LUO Jiayuan, YE Junfeng, et al. Optimization of Germination Conditions for γ-Aminobutyric Acid Accumulation and Component Analysis of Black Tartary Buckwheat[J]. Science and Technology of Food Industry, 2021, 42(24): 144−150. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030277.
Citation: HUANG Siyuan, LUO Jiayuan, YE Junfeng, et al. Optimization of Germination Conditions for γ-Aminobutyric Acid Accumulation and Component Analysis of Black Tartary Buckwheat[J]. Science and Technology of Food Industry, 2021, 42(24): 144−150. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030277.

Optimization of Germination Conditions for γ-Aminobutyric Acid Accumulation and Component Analysis of Black Tartary Buckwheat

More Information
  • Received Date: March 22, 2021
  • Available Online: October 14, 2021
  • In order to improve the effective utilization rate of blacktartary buckwheat and realize its high value-added utilization, the germination parameters were optimized using one-factor-at-a-time method and response surface methodology. Furthermore, the changes in the contents of basic nutritional components and bioactive compounds in black tartary buckwheat were investigated before and after germination. The optimal germination conditions were determined as follows: Germination time of 4 days, germination temperature of 25 ℃, soaking temperature of 25 ℃, soaking time of 6 h. Under these conditions, the content of GABA in blacktartary buckwheat was 33.40 mg/100 g. The results showed that the concentrations of carbohydrate, total phenol, total flavonoids, quercetin, kaempferol, epicatechin, and chlorogenic acid were significantly increased compared with that before germination. Specially, chlorogenic acid and epicatechin concentrations were 16.14 and 11.05 times that of those before germination, respectively. Moreover, kaempferol and quercetin contents increased by 86.4% and 83.5%, respectively. Total phenols and flavonoids concentrations increased by 57.1% and 28.6%, respectively. The contents of crude protein and crude fat were similar before and after germination, while the contents of ash and rutin decreased significantly(P<0.05). The results of this study would provide new ideas and a theoretical basis for further processing and development of black tartary buckwheat.
  • [1]
    LIU Y, CAI C, YAO Y, et al. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing[J]. Journal of the Science of Food and Agriculture,2019,99(12):5565−5576. doi: 10.1002/jsfa.9825
    [2]
    蒲升惠, 高颖, 赵志峰, 等. 苦荞中活性物质及其保健功效研究进展[J]. 食品工业科技,2019,40(8):331−336. [PU S H, GAO Y, ZHAO Z F, et al. Research progress on bioactive components and health benefits of tartary buckwheat[J]. Food Industry Science and Technology,2019,40(8):331−336.
    [3]
    LEE D, JANG I S, YANG K E, et al. Effect of rutin from tartary buckwheat sprout on serum glucose-lowering in animal model of type 2 diabetes[J]. Acta Pharmaceutica,2016,66(2):297−302. doi: 10.1515/acph-2016-0021
    [4]
    PENG W, HU C, SHU Z, et al. Antitumor activity of tatariside F isolated from roots of Fagopyrum tataricum (L. ) Gaertn against H22 hepatocellular carcinoma via up-regulation of p53[J]. Phytomedicine:International Journal of Phytotherapy and Phytopharmacology,2015,22(7−8):730−736. doi: 10.1016/j.phymed.2015.05.003
    [5]
    宁亚维, 马梦戈, 杨正, 等. γ-氨基丁酸的制备方法及其功能食品研究进展[J]. 食品与发酵工业,2020,46(23):238−247. [NING Y W, MA M G, YANG Z, et al. Research progress in the enrichment process and functional foods of γ-aminobutyric acid[J]. Food and Fermentation Industries,2020,46(23):238−247.
    [6]
    KIM H. Functional foods and the biomedicalisation of everyday life: A case of germinated brown rice[J]. Sociology of Health & Illness,2013,35(6):842−857.
    [7]
    高立城, 夏美娟, 白文明, 等. 甜荞和苦荞萌发过程中营养成分分析[J]. 营养学报,2019,41(6):617−619. [GAO L C, XIA M J, BAI W M, et al. Nutritional analysis of common buckwheat and tartary buckwheat during germination[J]. Journal of Nutrition,2019,41(6):617−619. doi: 10.3969/j.issn.0512-7955.2019.06.021
    [8]
    CHAROENTHAIKIJ P, JANGCHUD K, JANGCHUD A, et al. Germination conditions affect selected quality of composite wheat-germinated brown rice flour and bread formulations[J]. Journal of Food Science,2010,75(6):312−318. doi: 10.1111/j.1750-3841.2010.01712.x
    [9]
    汪建飞. 微波处理下苦荞麦萌发及其芽苗抗氧化活性的研究[D]. 芜湖: 安徽工程大学, 2019.

    WANG J F. Study on germination of tartary buckwheat and antioxidant activity in its sprouts under microwave treatent[D]. Wuhu: Anhui Polytechnic Univercity, 2019.
    [10]
    JIANG S, LIU Q, XIE Y, et al. Separation of five flavonoids from tartary buckwheat(Fagopyrum tataricum (L. ) Gaertn) grains via off-line two dimensional high-speed counter-current chromatography[J]. Food Chemistry,2015:186.
    [11]
    李婷玉, 杜艳, 陈正行, 等. 胁迫萌发对青稞籽粒中β-葡聚糖和γ-氨基丁酸含量的影响[J]. 中国粮油学报,2021,36(6):30−35. [LI T Y, DU Y, CHEN Z X, et al. Effect of highland barley seed germination under stress on contents of β-glucan and γ-aminobutyric acid[J]. Chinese Journal of Cereals and Oils,2021,36(6):30−35. doi: 10.3969/j.issn.1003-0174.2021.06.006
    [12]
    蒋振晖. Ca2+和通气处理对糙米发芽过程中主要物质变化的影响及γ-氨基丁酸富集技术研究[D]. 南京: 南京农业大学, 2003.

    JIANG Z H. Effect of Ca2+ and aerating treatment on some essential substances of and GABA enrichment technology in germinating brown rice[D]. Nanjing: Nanjing Agricultural University, 2003.
    [13]
    郑向华, 陈荣, 叶宁, 等. 温度和时间对发芽糙米中γ-氨基丁酸含量的影响[J]. 中国粮油学报,2009,24(9):1−4. [ZHENG X H, CHEN R, YE N, et al. Effects of temperature and time on γ-GABA content of germinated brown rice[J]. Chinese Journal of Cereals and Oils,2009,24(9):1−4.
    [14]
    王维坚, 马中苏, 孟凡刚, 等. 发芽糙米浸泡工艺的研究[J]. 吉林粮食高等专科学校学报,2003,18(4):7−10. [WANG W J, MA Z S, MENG F G, et al. A study on soaking processing in the production of the germinated brown rice[J]. Journal of Jilin Grain College,2003,18(4):7−10.
    [15]
    巢晓玲, 黎扬辉, 敬思群, 等. 油莎豆发芽前后营养成分及多糖生物活性的变化[J]. 食品工业科技,2021,42(12):327−333. [CHAO X L, LI Y H, JING S Q, et al. Analysis of nutrient composition and bioactivity of cyperus esculentus (C. esculentus L. ) before and after germination[J]. Science and Technology of Food Industry,2021,42(12):327−333.
    [16]
    崔江明, 周海龙, 马利华. 发芽、发酵对燕麦营养性及抗氧化性的影响[J]. 食品科技,2021,46(2):130−134. [CUI J M, ZHOU H L, MA L H. Effects of germination and fermentation on nutritional and antioxidant properties of oat[J]. Food Science and Technology,2021,46(2):130−134.
    [17]
    郑晨曦, 郝建雄, 宋曙辉, 等. 微酸性电解水对苦荞芽活性成分及抗氧化能力的影响[J]. 食品科学,2018,39(4):20−25. [ZHENG C X, HAO J X, SONG S H, et al. Effect of slightly acidic electrolyzed water on the bioactive compounds and antioxidant activity of tartary buckwheat sprouts[J]. Food Science,2018,39(4):20−25. doi: 10.7506/spkx1002-6630-201804004
    [18]
    JIANG S, LIU Q, XIE Y, et al. Separation of five flavonoids from tartary buckwheat(Fagopyrum tataricum (L. ) Gaertn) grains via off-line two dimensional high-speed counter-current chromatography[J]. Food Chemistry,2015,186:153−159. doi: 10.1016/j.foodchem.2014.08.120
    [19]
    姜秀杰, 张桂芳, 张东杰. 真空协同发芽富集豌豆γ-氨基丁酸的工艺优化研究[J]. 食品科技,2020,45(5):58−63. [JIANG X J, ZHANG G F, ZHANG D J. Optimization of vacuum co-germination process for enrichment of γ-aminobutyric acid in pea[J]. Food Science and Technology,2020,45(5):58−63.
    [20]
    杨丽, 肖斌, 肖登荣, 等. 富氢水发芽糙米加工工艺及其品质研究[J/OL]. 食品工业科技, 2021, 42(9): 145-153.

    YANG L, XIAO B, XIAO D R, et al. Study on processing technology and quality of germinated brown rice with hydrogen rich water [J/OL]. Food Science and Technology, 2020, 45(5): 58-63.
    [21]
    梅婵, 方勇, 裴斐, 等. 发芽糙米铁生物强化的正交试验优化及其形态分析[J]. 食品科学,2016,37(6):52−57. [MEI C, FANG Y, PEI F, et al. Optimization and speciation analysis of germinated brown rice iron bioenhancement by orthogonal experiment[J]. Food Science,2016,37(6):52−57. doi: 10.7506/spkx1002-6630-201606009
    [22]
    王嘉怡, 潘姝璇, 夏陈, 等. 发芽糙米米糠营养成分和γ-氨基丁酸分析及缓解体力疲劳功效[J]. 食品科学,2019,40(1):177−182. [WANG J Y, PAN S X, XIA C, et al. Nutritional composition, gamma-aminobutyric acid content and antifatigue activity of germinated brown rice bran[J]. Food Science,2019,40(1):177−182. doi: 10.7506/spkx1002-6630-20170711-165
    [23]
    马先红, 魏玉玲, 李京徽, 等. 发芽处理对谷物主要成分含量变化的影响[J]. 保鲜与加工,2021,21(6):145−150. [MA X H, WEI Y L, LI J H. Effect of germination on main components of grain[J]. Storage and Process,2021,21(6):145−150. doi: 10.3969/j.issn.1009-6221.2021.06.023
    [24]
    马先红, 温钢. 发芽对玉米营养成分的影响[J]. 粮食与油脂,2017,30(11):1−4. [MA X H, WEN G. Effect of germination on nutrition component of maize[J]. Grain and Fats,2017,30(11):1−4. doi: 10.3969/j.issn.1008-9578.2017.11.001
    [25]
    REN S, SUN J. Changes in phenolic content, phenylalanine ammonia-lyase(PAL) activity, and antioxidant capacity of two buckwheat sprouts in relation to germination[J]. Journal of Functional Foods,2014,7(2014):298−304.
    [26]
    庞萌萌. 苦荞添加微量元素发芽后肌醇等化学成分变化及降糖活性研究[D]. 济南: 山东中医药大学, 2018.

    PANG M M. Study on changes of inositol and other chemical components and the activity of decreasing blood glucose after germination of buckwheat with added trace elements[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2018.
  • Cited by

    Periodical cited type(2)

    1. 朱秀娟,孙娜,陈文东,聂龙英,王林林. 核桃花护色保脆技术研究. 宁夏师范学院学报. 2022(07): 52-58 .
    2. 王纪辉,曾亚军,侯娜,耿阳阳,胡伯凯,刘亚娜,张时馨,杨光. 曲面响应法优化核桃雄花多酚提取工艺及其组成与抗氧化活性分析. 南方农业学报. 2022(10): 2997-3008 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return