Citation: | ZHANG Yalan, LV Siqi, ZHANG Shiqi, et al. Water Activity at Isothermal Temperature and Its Effect on Microbial Heat Resistance in Low-moisture Foods[J]. Science and Technology of Food Industry, 2022, 43(5): 455−463. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030241. |
[1] |
LABUZA T P. Sorption phenomena in foods: Theoretical and practical aspects[M]. Springer Netherlands, 1975: 197–219.
|
[2] |
SYAMALADEVI R M, TADAPANENI R K, XU J, et al. Water activity change at elevated temperatures and thermal resistance of Salmonella in all purpose wheat flour and peanut butter[J]. Food Research International,2016,81:163−170. doi: 10.1016/j.foodres.2016.01.008
|
[3] |
LIU S, TANG J, TADAPANENI R K. Ponentially increased thermal resistance of Salmonella and Enterococcus faecium at reduced water activity[J]. Environmental Microbiology, 2018, 84(8):e02742-17.
|
[4] |
FDA. Risk profile: Pathogen and filt in spices. CFSAN Risk & Safety Assessments[S/OL]. 2019. https://www.fda.gov/food/cfsan-risk-safety-assessments/risk-profile-pathogen-and-filth-spices.
|
[5] |
National Advisory Committee on Microbiological Criteria for Foods. Parameters for determining inoculated pack/challenge study protocols[J]. Journal of Food Protection, 2010: 73: 140–202.
|
[6] |
连风, 赵伟, 杨瑞金. 低水分活度食品的微生物安全研究进展[J]. 食品科学,2014,35(19):333−337. [LIAN F, ZHAO W, YANG R J. Microbiological safety of low-water activity foods[J]. Food Science,2014,35(19):333−337. doi: 10.7506/spkx1002-6630-201419066
|
[7] |
张宏梅, 尹小慧, 林育成, 等. 沙门氏菌在不同环境下辣椒中的存活情况[J]. 现代食品科技,2017,33(4):236−240. [ZHANG H M, YIN X H, LIN Y C. et al. Survival of Salmonella in red pepper under different environmental conditions[J]. Modern Food Science & Technology,2017,33(4):236−240.
|
[8] |
石品. 低水分活度食品携带病菌情况加重[J]. 农产品加工,2013(2):74−75. [SHI P. Low water activity foods carry more pathogens[J]. Farm Products Processing,2013(2):74−75.
|
[9] |
FINN S, CONDELL O, MCCLURE P, et al. Mechanisms of survival, responses, and sources of Salmonella in low-moisture environments[J]. Frontiersin Microbiology,2013,4(1):331.
|
[10] |
Administration, U S F and D. Outbreak investigation of Salmonella Stanley: Wood ear mushrooms-dried fungus[EB/OL]. (2020-11-4). https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-Salmonella-stanley-wood-ear-mushrooms-dried-fungus-september-2020.
|
[11] |
CDC. Multistate outbreak of shiga toxin-producing Escherichia coli O121 infections associated with Flour-Canada, 2016-2017[EB/OL]. (2016-9-29). https://www.cdc.gov/ecoli/2016/o121-06-16/index.html
|
[12] |
FDA. Urgent food recall of Jungle Jim's roast no salt sunflower seeds, Windy Acres fruity trail mix and Windy Acres no salt sunflower seeds due to potential presence of Listeria monocytogenes[EB/OL]. (2016-6-2). https://www.fda.gov/Safety/Recalls/ucm504811.htm.
|
[13] |
CDC. Multistate outbreak of Salmonella Montevideo and Salmonella Senftenberg infections linked to wonderful pistachios(final update)[EB/OL]. (2016-5-20).https://www.cdc.gov/Salmonella/montevideo-03-16/index.html.
|
[14] |
MCCALLUM L, PAINE S, SEXTON K, et al. An outbreak of Salmonella typhimurium phage type 42 associated with the consumption of raw flour[J]. Foodborne Pathogens and Disease,2013,10(2):159−164. doi: 10.1089/fpd.2012.1282
|
[15] |
HOLDSWORTH S D, SIMPSON R. Thermal processing of packaged foods[M]. Blackie Academic and Professional, 1997.
|
[16] |
The Association of Food Beverage and Consumer Products Companies. Control of Salmonella in low-moisture foods[S]. 2009.
|
[17] |
Almond Board of California. Guidelines for process validation using Enterococcus faecium NRRL B-2354[S]. 2007.
|
[18] |
Almond Board of California. Guidelines for validation of dry roasting processes[S]. 2007.
|
[19] |
WHO. Code ofhygienic practice for low-moisture foods CAC/RCP 75-2015[S]. 2016.
|
[20] |
VILLA-ROJAS R, TANG J, WANG S, et al. Thermal inactivation of Salmonella enteritidis PT 30 in almond kernels as influenced by water activity[J]. Journal of Food Protection,2013,76(1):26−32. doi: 10.4315/0362-028X.JFP-11-509
|
[21] |
Food, U S. Guidance for industry: Measures to address the risk for contamination by Salmonella species in food containing a peanut-derived product as an ingredient[S]. United States: Center for Food Safety and Applied Nutrition, 2012(99): 4–7.
|
[22] |
FDA. Guidance for industry: Measures to address the risk for contamination by Salmonella species in food containing a pistachio-derived product as an ingredient[S/OL]. United States: Center for Food Safety and Applied Nutrition, 2009: 3. https://www.fda.gov/RegulatoryInformation/Guidances/ucm115386.htm.
|
[23] |
OpX Leadership Network. Spotlight on baking [S/OL]. 2016. https://www.opxleadershipnetwork.org/quality/download/spotlight-baking.
|
[24] |
GAILLARD S, LEGUERINEL I, MAFART P. Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores[J]. Journal of Food Science,2010,63(5):887−889.
|
[25] |
PODOLAK R, ENACHE E, STONE W, et al. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods[J]. Journal of Food Protection,2010,73(10):1919−1936. doi: 10.4315/0362-028X-73.10.1919
|
[26] |
LIMCHAROENCHAT P, MARKS B P, JEONG S. The effect of changing almond water activity on thermal inactivation of Salmonella enteritidis PT 30 during dry heating[C]//in American Society of Agricultural and Biological Engineers Annual International Meeting, 2014.
|
[27] |
SANTILLANA FARAKOS S M, FRANK J F, SCHAFFNER D W. Modeling the influence of temperature, water activity and water mobility on the persistence of Salmonella in low-moisture foods[J]. International Journal of Food Microbiology,2013,166(2):280−293. doi: 10.1016/j.ijfoodmicro.2013.07.007
|
[28] |
GARCES-VEGA F J, RYSER E T, MARKS B P. Relationships of water activity and moisture content to the thermal inactivation kinetics of Salmonella in low-moisture foods[J]. Journal of Food Protection,2019,82(6):963−970. doi: 10.4315/0362-028X.JFP-18-549
|
[29] |
HAIPING L I, XIAOWEN F U, BIMA Y, et al. Effect of the local microenvironment on survival and thermal inactivation of Salmonella in low- and intermediate-moisture multi-ingredient foods[J]. Journal of Food Protection,2014,77(1):67−74. doi: 10.4315/0362-028X.JFP-13-277
|
[30] |
SHIGEMOTO M, NAKAGAWA K, SAKAMOTO J J, et al. Thermal death of Bacillus subtilis spores in oil water systems[J]. Biocontrol Science,2010,15(1):27−31. doi: 10.4265/bio.15.27
|
[31] |
SYAMALADEVI R M, TANG J, VILLA-ROJAS R, et al. Influence of water activity on thermal resistance of microorganisms in low-moisture foods: A review[J]. Comprehensive Reviews in Food ence and Food Safety,2016,15(2):353−370. doi: 10.1111/1541-4337.12190
|
[32] |
LONCIN M. Activity of water and its importance in preconcentration and drying of foods[C]//Preconcentration and Drying of Food Materials, Elsevier, 1988, 15–34.
|
[33] |
BERG E V D, BRUIN S. Water activity and its estimation in food systems: Theoretical aspects[C]//Water Activity: Influences on Food Quality, Academic Press, 1981, 1–62.
|
[34] |
FONTANA A J. Measurement of water activity, moisture sorption isotherms, and moisture content of foods[M]. Water Activity in Foods: Fundamentals and Applications. Blackwell Publishing Ltd, 2008.
|
[35] |
ALSHAMMARI J, XU J, TANG J, et al. Thermal resistance of Salmonella in low-moisture high-sugar products[J]. Food Control,2020,114:107255. doi: 10.1016/j.foodcont.2020.107255
|
[36] |
LIU S, ROJAS R V, GRAY P,et al. Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: Influence of water activity at high temperatures[J]. Food Microbiology,2018,74:92−99. doi: 10.1016/j.fm.2018.03.001
|
[37] |
GREENSPAN L. Humidity fixed points of binary saturated aqueous solutions[J]. J Res Natl Bur Stand,1977,81(1):81−89.
|
[38] |
LAROCHE C, FINE F, GERVAIS P. Water activity affects heat resistance of microorganisms in food powders[J]. International Journal of Food Microbiology,2005,97(3):307−315. doi: 10.1016/j.ijfoodmicro.2004.04.023
|
[39] |
SUMNER S S, SANDROS T M, HARMON M C, et al. Heat resistance of Salmonella typhimurium and Listeria monocytogenes in sucrose solutions of various water activities[J]. Journal of Food Science,1991,56:1741−1743. doi: 10.1111/j.1365-2621.1991.tb08684.x
|
[40] |
LIU S, XU J, XIE L, et al. Dry inoculation methods for nonfat milk powder[J]. Journal of Dairy Science,2018,102(1):77−86.
|
[41] |
BIANCHINI A, STRATTON J, WEIER S, et al. Use of Enterococcus faecium as a surrogate for Salmonella enterica during extrusion of a balanced carbohydrate-protein meal[J]. Journal of Food Protection,2014,77:75−82. doi: 10.4315/0362-028X.JFP-13-220
|
[42] |
CHEN L, WEI X, IRMAK S, et al. Inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in cumin seeds by radiofrequency heating[J]. Food Control,2019,103:59−69. doi: 10.1016/j.foodcont.2019.04.004
|
[43] |
SYAMALADEVI R M, TANG J, ZHONG Q P. Water diffusion from a bacterial cell in low-moisture foods[J]. Journal of Food Science,2016,81(9):R2129−R34.
|
[44] |
YANG R, GUAN J, SUN S, et al. Understanding water activity change in oil with temperature[J]. Current Research in Food Science,2020,3:158−165. doi: 10.1016/j.crfs.2020.04.001
|
[45] |
GIBBARD H F, ROUSSEAU R A, CREEK J L, et al. Liquid-vapor equilibrium of aqueous sodium chloride, from 298 to 373 K and from 1 to 6 mol kg-1, and related properties[J]. Journal of Chemical and Engineering Data,1974,19(3):281−288. doi: 10.1021/je60062a023
|
[46] |
GIBBARD H F, CATCHARD G. Liquid-vapor equilibrium of aqueous lithium chloride, from 25 ℃ to 100 ℃ and from 1.0 to 18.5 molal, and related properties[J]. Journal of Chemical and Engineering Data, 1973, 18(3): 293–298 .
|
[47] |
LOMAURO C J, BAKSHI A S, LABUZA T P. Evaluation of food moisture sorption isotherm equations part I: Fruit, vegetable and meatproducts[J]. LWT-Food Science and Technology,1985,18(2):111−117.
|
[48] |
LOMAURO C J, BAKSHI A S, LABUZA T P. Evaluation of food moisture sorption isotherm equations part II: Milk, coffee, tea, nuts, oilseeds, spices and starchy foods[J]. LWT-Food Science and Technology,1985,18(2):118−124.
|
[49] |
QUIRIJNS E J, BOXTEL A J V, LOON W K V, et al. Sorption isotherms GAB parameters and isosteric heat of sorption[J]. Journal of the Science of Food and Agriculture,2005,85(11):1805−1814.
|
[50] |
HOSSAIN M D, BALA B K, HOSSAIN M A, et al. Sorption isotherms and heat of sorption of pineapple[J]. Journal of Food Engineering,2001,48(2):103−107. doi: 10.1016/S0260-8774(00)00132-1
|
[51] |
JAMALI A, KOUHIL A M, MOHAMED L A, et al. Sorption isotherms of Chenopodium ambrosioides leaves at three temperatures[J]. Journal of Food Engineering,2006,72(1):77−84. doi: 10.1016/j.jfoodeng.2004.11.021
|
[52] |
TADAPANENI R K, YANG R, CARTER B, et al. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures[J]. Food Research International,2017,102:203−212. doi: 10.1016/j.foodres.2017.09.070
|
[53] |
LIU S, TANG J, TADAPANENI R K, et al. Exponentially increased thermal resistance of Salmonella and Enterococcus faecium at reduced water activity[J]. Applied and Environmental Microbiology,2018,84(8):AEM.02742−17.
|
[54] |
LIU S X, TANG J M, TADAPANENI R K, et al. Exponentially increased thermal resistance of Salmonella spp. and Enterococcus faecium at reduced water activity[J]. Applied and Environmental Microbiology,2018,84:1−12.
|
[55] |
XU J, TANG J M, JIN Y Q, et al. High temperature water activity as a key factor influencing survival of Salmonella enteritidis PT 30 in thermal processing[J]. Food Control,2019,98:520−528. doi: 10.1016/j.foodcont.2018.11.054
|
[56] |
XIE Y, XU J, YANG R, et al. Moisture content of bacterial cells determines thermal resistance of Salmonella enteritidis PT 30[J]. Applied and Environmental Microbiology, 2021, 87(3):e02194-20.
|
[57] |
SMITH D F, HILDEBRANDT I M, CASULLI K E, et al. Modeling the effect of temperature and water activity on the thermal resistance of Salmonella enteritidis PT 30 in wheat flour[J]. Journal of Food Protection,2016,79:2058−2065. doi: 10.4315/0362-028X.JFP-16-155
|
[58] |
LIU S, ZHONG Q, SMITH D, et al. Validation of Enterococcus faecium NRRL B2354 as a surrogate for Salmonella in thermal treatment of wheat flour at different water activities[C]//Int Assoc Food Prot Ann Meet. Portland, OR, 2015.
|
[59] |
REYES M E P. Thermal inactivation of Salmonella enteritidis PT 30 and Enterococcus faecium in egg powders at different water activities[D]. Pullman: Washington State University, 2019.
|
[60] |
TAYLOR B J, QUINN A R, KATAOKA A. Listeria monocytogenes in low-moisture foods and ingredients[J]. Food Control,2019,103:153−160. doi: 10.1016/j.foodcont.2019.04.011
|
1. |
赵志程,赵巍,张爱霞,刘敬科,生庆海,李朋亮. 脂质热解形成的挥发性成分及途径研究进展. 粮食与油脂. 2024(08): 12-18 .
![]() | |
2. |
刘颖,黄小波. 食品中活泼羰基化合物研究进展. 中外食品工业. 2024(11): 43-45 .
![]() |