WEI Yanye, JIANG Mingguo, DENG Liyao, et al. Hypolipidemic Effect and Liver Protection of Irpex lacteus Fermented Tea in Vivo[J]. Science and Technology of Food Industry, 2021, 42(24): 334−339. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030168.
Citation: WEI Yanye, JIANG Mingguo, DENG Liyao, et al. Hypolipidemic Effect and Liver Protection of Irpex lacteus Fermented Tea in Vivo[J]. Science and Technology of Food Industry, 2021, 42(24): 334−339. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030168.

Hypolipidemic Effect and Liver Protection of Irpex lacteus Fermented Tea in Vivo

More Information
  • Received Date: March 14, 2021
  • Available Online: October 20, 2021
  • To study the effect of Irpex lacteus fermented tea on blood lipids and liver in mouse, 60 male KM mice were established hyperlipidemia model by high-fat diet induction, and then were randomly divided into six groups: Model group, simvastatin positive control group(10 mg/kg), green tea group(400 mg/kg) and high(400 mg/kg), medium(200 mg/kg), and low(100 mg/kg) dose Irpex lacteus fermented tea groups. And another 10 male KM mice were set up blank control group. The blank control group was given basic feeds, and the remaining groups were fed with high-fat feeds and gavage corresponding drugs. After 35 days, the body weight, liver weight and liver coefficient of each group were calculated. Serum total cholesterol(TC), triglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), aspartate aminotransferase(AST), alanine aminotransferase(ALT), alkaline phosphatase(ALP), superoxide dismutase(SOD), malondialdehyde(MDA) and glutathion peroxide(GSH) levels were detected, and morphological changes(HE) and liver fat particles(oil red O) in the liver of mice were observed. The results showed that high(400 mg/kg) dose Irpex lacteus fermented tea group could significantly reduce the levels of TC, LDL-C, AST, ALT, ALP and liver coefficient(P<0.05 or P<0.01), these indicators levels were close to the simvastatin group. High(400 mg/kg) dose Irpex lacteus fermented tea group extremely significantly reduced TG level(P<0.01), and with the blank control group TG level, and increased HDL-C levels(P<0.01) in hyperlipidemic mice, the level of HDL-C was close to simvastatin group. It also could significantly reduce MDA content in liver and hyperlipidemia mice below simvastatin group, and increase SOD and GSH activity, which were close to blank control group and simvastatin group, respectively(P<0.05), improve the degree of fatty liver histopathology, and reduce liver fat particles. These findings indicated that the high(400 mg/kg) dose Irpex lacteus fermented tea group had hypolipidemic, improved the fatty liver disease and hepatoprotective effects by regulating oxidative stress in hyperlipidemic mice. This study would provide a theoretical basis for the development and utilization of the Irpex lacteus fermented tea as functional tea with anti-oxidation, lowering blood lipid and improving fatty liver.
  • [1]
    GADDI A, CICERO A F G, ODOO F O, et al. The atherosclerosis and metabolic diseases study group. Practical guidelines for familial combined hyperlipidemia diagnosis: An up-date[J]. Vascular Health and Risk Management,2007,3(6):877−886.
    [2]
    CHEN Z Y, JIAO R, MA K Y. Cholesterol-lowering nutraceuticals and functional foods[J]. Journal of Agricultural & Food Chemistry,2008,56(19):8761−8773.
    [3]
    JAIN K S, KATHIRAVAN M K, SOMANI R S, et al. The biology and chemistry of hyperlipidemia[J]. Bioorganic and Medicinal Chemistry,2007,15(14):4674−4699. doi: 10.1016/j.bmc.2007.04.031
    [4]
    DRECHSLER M, MEGENS R T A, VAN ZANDYVOORT M, et al. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis[J]. Circulation,2010,122(18):1837−1845. doi: 10.1161/CIRCULATIONAHA.110.961714
    [5]
    LI J G, SAVRANSKY V, NANAYAKKAR A, et al. Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia[J]. Journal of Applied Physiology,2007,102(2):557−563. doi: 10.1152/japplphysiol.01081.2006
    [6]
    XU W. Relation study of hyperlipemia and fatty liver[J]. Journal of Medical Information,2010,23(7):2098−2099.
    [7]
    EHNHLM C, LUKKA M, KUUSI T, et al. Apolipoprotein E polymorphism in the finnish population: Gene frequencies and relation to lipoprotein concentration[J]. Journal of Lipid Research,1986,27:227−235.
    [8]
    ZENG B Q. The effect of dietary factors on the changes of serum cholesterol and triglycerides in hyperlipemia patients[D]. SUN Yat-sen University, 2007: 6−30.
    [9]
    GUO D J, YUAN X H, CAI M, et al. Current situation and prospect of research in reducing blood lipid by traditional Chinese medicine and western medicine[J]. Heilongjiang Medicine Journal,2014,27(1):31−37.
    [10]
    DENG J W, GUO D, ZHOU H G. Pharmacokinetics research progress on statins[J]. Chinese Journal of Clinical Pharmacology and Therapeutics,2007,12(8):850−860.
    [11]
    DIAO Y L, LIU Y, MENG D L. Advances in studies on the natural hypolipidemic ingredients[J]. Journal of Shenyang Pharmaceutical University,2009(12):1008−1012.
    [12]
    单科开, 王鸿飞, 许凤, 等. 苦菜黄酮对高脂血症小鼠血脂代谢及保肝作用[J]. 食品科学,2019,40(19):231−236. [SHAN K K, WANG H F, XU F, et al. Flavonoids from Sonchus oleraceus L. exert a hepatoprotective effect in hyperlipidemic mice by regulating blood lipid metabolism[J]. Food Science,2019,40(19):231−236. doi: 10.7506/spkx1002-6630-20181010-087
    [13]
    崔敬爱, 王思霁, 刘畅, 等. 桦褐孔菌多糖对高脂饮食诱导的高脂血症大鼠血脂和肝脏的保护作用及机制[J]. 食品科学,2020,41(19):185−190. [CUI J A, WANG S Q, LIU C, et al. Protective effect and mechanism of Inonotus obliquus polysaccharide on blood lipids and liver in hyperlipidemia rats induced by high-fat diet[J]. Food Science,2020,41(19):185−190. doi: 10.7506/spkx1002-6630-20191015-147
    [14]
    DONG X M, SONG X H, LIU X B, et al. Prospect and current research status of medicinal fungus Irpex lacteus[J]. Mycosystema,2017,36(1):28−34.
    [15]
    WU L, ZHANG X G, SHI T S, et al. Optimization of extraction for Irpex lacteus polysaccharides and its bioactivity[J]. Lishizhen Medicine and Materia Medica Research,2010,21(12):3094−3096.
    [16]
    LI A, YUAN W B, ZHANG Z G, et al. Study on the immunological activity of Irpex lacteus fermentation fluid and its distinct components[J]. Journal of Pharmaceutical Research,2018,37(2):72−74.
    [17]
    HUANG J, LI A, LIU Y G, et al. Effect of Irpex lacteus fermentation solid products on hyperuricemia and gouty arthritis[J]. Northwest Pharmaceutical Journal,2018,33(4):488−491.
    [18]
    TANG Y, ZHAO Z Z, LI Z H, et al. Irpexoates A-D, four triterpenoids with malonyl modifications from the fruiting bodies of the medicinal fungus Irpex lacteus[J]. Natural Products and Bioprospecting,2018,8(3):171−176. doi: 10.1007/s13659-018-0160-3
    [19]
    DING J H, LI Z H, FENG T, et al. A new tremulane sesquiterpenoid from the fungus Irpex lacteus[J]. Natural Product Research,2018,33(3):1−5.
    [20]
    WU Y J. The active ingredients and efficacy of tea[J]. Development of Agricultural and Animal Husbandry Products,1997(10):8−11.
    [21]
    SHEN W, HUANG J N, LI Q, et al. The research progress of health care function and mechanism of the active ingredients in tea[J]. Journal of Tea Communication,2016,43(1):8−13.
    [22]
    ZHANG S P, WANG Y F, XU P. Prevention of tea polyphenols on atherosclerosis and relative mechanisms[J]. Journal of Tea Science,2019,39(3):231−246.
    [23]
    LIU L. Discussion on main functional components and biological activities in the tea[J]. South China Agriculture,2018,12(24):140−141,149.
    [24]
    SHUAI Y Y, ZHANG T, JIANG B, et al. Research progress of L-theanine[J]. Food and Fermentation Industries,2008,34(11):121−127.
    [25]
    LIU Y, LI S, WANG C L, et al. Progress in the research of L-theanine health benefits[J]. Food Research and Development,2016,37(17):211−214.
    [26]
    YANG W. Pharmacological effects and prospects of development and utilization of caffeine[J]. Tea Science and Technology,2006(4):9−11.
    [27]
    韦翠容. 提高病理组织石蜡切片质量的策略研究[J]. 临床医药文献杂志(电子版),2017,4(27):5345−5346. [WEI C R. Study on the strategy of improving the quality of paraffin section of pathological tissue[J]. Electronic Journal of Clinical Medical Literature,2017,4(27):5345−5346.
  • Related Articles

    [1]PENG Xuyang, CHEN Junran, CUI Hanyuan, HU Liwu, ZHANG Zidi, ZHU Xingyu, CHEN Cunkun. Volatile Substances of Different Hosts of Cistanche deserticola in Xinjiang Based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272-279. DOI: 10.13386/j.issn1002-0306.2023050230
    [2]KAN Jintao, WANG Yuanyuan, SONG Fei, ZHANG Jianguo, ZHANG Yufeng. Effect of Frozen Periods on Volatile Flavor Compounds of Coconut Water Based on GC-IMS and Chemometrics Analysis[J]. Science and Technology of Food Industry, 2023, 44(19): 329-335. DOI: 10.13386/j.issn1002-0306.2022110273
    [3]YAN Chen, ZHANG Yunbin, XU Qijie, ZHOU Xuxia, DING Yuting, WANG Wenjie. Effect of Storage Positions on the Volatile Flavor Compounds (VFCs) of Paddy Rice through Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) Analysis[J]. Science and Technology of Food Industry, 2023, 44(17): 375-382. DOI: 10.13386/j.issn1002-0306.2022120073
    [4]Bingkun YANG, Ning JU, Yuhong DING, Rong GUO, Mianhong GONG. Characterization of Volatile Flavors of Fermented Sea-buckthorn Yoghurt Using Gas Chromatography-Ion Mobility Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(13): 308-315. DOI: 10.13386/j.issn1002-0306.2022080120
    [5]LIU Lili, YANG Hui, JING Xiong, ZHANG Yafang, XU Chen, YAN Zongke, QI Yaohua. Analysis of Volatile Compounds in Aged Fengxiang Crude Baijiu Based on GC-MS and GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(23): 318-327. DOI: 10.13386/j.issn1002-0306.2022040054
    [6]LUO Yang, FENG Tao, WANG Kai, LI Dejun, MENG Xianle, SHI Mingliang, WANG Liang. Analysis of Difference Volatile Organic Compounds in Passion Fruit with Different Maturity via GC-IMS[J]. Science and Technology of Food Industry, 2022, 43(15): 321-328. DOI: 10.13386/j.issn1002-0306.2021120148
    [7]ZHANG Minmin, LU Yanxiang, ZHAO Zhiguo, CUI Li, YAN Huijiao, WANG Xiao, ZHAO Hengqiang. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method[J]. Science and Technology of Food Industry, 2021, 42(14): 226-232. DOI: 10.13386/j.issn1002-0306.2020080205
    [8]Hang YIN, Wenhong ZHOU, Yunxia BAI, Xiaoling LIU. Analysis of the Flavor of Guangxi Luosi-Noodle and Luosi-Hot-Pot by Electronic Nose and Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)[J]. Science and Technology of Food Industry, 2021, 42(9): 281-288. DOI: 10.13386/j.issn1002-0306.2020070197
    [9]Wensheng YAO, Shuangyu MA, Yingxuan CAI, Dengyong LIU, Mingcheng ZHANG, Hao ZHANG. Analysis of Volatile Flavor Substances in Mutton Shashlik Based on GC-IMS Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 256-263. DOI: 10.13386/j.issn1002-0306.2020060339
    [10]GUO Mei-juan, CHAI Chun-xiang, LU Xiao-xiang, WANG Tian, FAN Hou-qin. Development and applications of HS-SPME-GC-MS technology on detection of volatile flavor components in aquatic product[J]. Science and Technology of Food Industry, 2014, (09): 368-371. DOI: 10.13386/j.issn1002-0306.2014.09.072
  • Cited by

    Periodical cited type(13)

    1. 陈品文,杨贵先,蒲成伟,周立,杨贵川,唐明双,刘建中,祝正林. 南充辣木主要病虫害发生规律及其防控措施. 农技服务. 2024(03): 68-71 .
    2. 雷福红,龙继明,张祖兵,段波,马志亮,李海泉,赵春攀. 辣木茎叶、籽、果荚营养成分及提取物抗氧化活性研究. 中国食品添加剂. 2024(07): 40-45 .
    3. 张玲玲,黄幼霞,林水花,张文州,吴新泉. 辣木叶干粉制备工艺中添加载体及干燥技术研究. 东南园艺. 2024(06): 505-511 .
    4. 杨卓凡,宣攒威,罗浩鑫,郑智彬,朱锦鸿,周红祖,黄庆宝,余惠旻. 辣木叶及其有效成分抗高脂血症药理作用研究进展. 药物评价研究. 2023(04): 911-916 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 张玉雯,蔡明,王福军,刘彦培,刘建勇,黄必志. 辣木作为蛋白饲料在家养动物饲喂上的应用进展. 草学. 2023(02): 66-77 .
    7. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    8. 余芳,汪洪涛,郑梦瑶,朱龙龙. 辣木茶多酚提取工艺优化及其体外抗氧化活性. 农产品加工. 2022(07): 24-28+34 .
    9. 张明晓,李化,陈娜,向俊洁,林路洁,李志勇,杨滨. 一测多评法同时测定辣木叶中硫苷及黄酮类成分的含量. 中国中药杂志. 2022(12): 3285-3294 .
    10. 张欣,周天天,孔祥辉,姜威,候杨. 黑木耳辣木叶复合压片糖果生产工艺研究. 中国食物与营养. 2022(11): 15-18 .
    11. 付饶,张明烁,彭华胜,张子隽,李皓月,宋坪,黄秀兰,李志勇. 柬埔寨常用药用植物资源的整理与研究. 中国现代中药. 2022(12): 2322-2334 .
    12. 岑忠用,苏江,高丽霞,吕丽娥,黄喜苗. 响应面优化辣木叶游离氨基酸的提取工艺. 饲料研究. 2021(11): 85-89 .
    13. Chidvilaphone Saythong,李家明,张玉鹏,唐燕飞,韦宗海,刘举祥,杨膺白,李梦梅. 发酵辣木叶对广西麻鸡生长性能、屠宰性能和肉品质的影响. 饲料研究. 2021(16): 20-24 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (223) PDF downloads (27) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return