ZHANG Jia, HAN Jin, WU Zhengjun, et al. Research Progress in the Cold Resistance of Lactic Acid Bacteria[J]. Science and Technology of Food Industry, 2022, 43(4): 463−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030140.
Citation: ZHANG Jia, HAN Jin, WU Zhengjun, et al. Research Progress in the Cold Resistance of Lactic Acid Bacteria[J]. Science and Technology of Food Industry, 2022, 43(4): 463−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030140.

Research Progress in the Cold Resistance of Lactic Acid Bacteria

More Information
  • Received Date: March 11, 2021
  • Available Online: December 06, 2021
  • Extremely low environmental temperature would lead the intracellular as well as the extracellular ice formation, decrease the fluidity and permeability of microbial cell membrane, cause abnormal folding of some proteins and nucleic acids in the cells and thus decrease the survival of the bacterial cells. In this paper, the effects of cold stress on membrane fluidity, protein and nucleic acid function of lactic acid bacteria (LAB) are reviewed, and the strategies adopted by LAB to overcome the multiple challenges encountered in cold stress are discussed, and the methodology employed to explore the cold stress on bacteria is also summarized. Perspective research of cold resistance of LAB should highlight on genomics, targeting on the critical genes involved in the synthesis of fatty acids, to unravel the mechanism of LAB in regulating membrane lipid composition. In addition, emphasis should be focused on the flexibility of the structure of chaperones, especially those of cold shock proteins on the resistance to the producer cells under cold stress.
  • [1]
    FENG T, WANG J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review[J]. Gut Microbes,2020,12(1):1801944. doi: 10.1080/19490976.2020.1801944
    [2]
    FRANZMANN P D, HÖPFL P, WEISS N, et al. Psychrotrophic, lactic acid-producing bacteria from anoxic waters in ace lake, antarctica; Carnobacterium funditum sp. nov. and Carnobacterium alterfunditum sp. nov.[J]. Archives of Microbiology,1991,156(4):255−262. doi: 10.1007/BF00262994
    [3]
    POTHAKOS V, TAMINIAU B, HUYS G, et al. Psychrotrophic lactic acid bacteria associated with production batch recalls and sporadic cases of early spoilage in belgium between 2010 and 2014[J]. International Journal of Food Microbiology,2014,191:157−163. doi: 10.1016/j.ijfoodmicro.2014.09.013
    [4]
    SHARMA A, LAVANIA M, SINGH R, et al. Identification and probiotic potential of lactic acid bacteria from camel milk[J]. Saudi Journal of Biological Sciences,2020,28(3):1622−1633.
    [5]
    HANDA S, SHARMA N. In vitro study of probiotic properties of Lactobacillus plantarum f22 isolated from chhang–a traditional fermented beverage of himachal pradesh, India[J]. Journal of Genetic Engineering and Biotechnology,2016,14(1):91−97. doi: 10.1016/j.jgeb.2016.08.001
    [6]
    SAMANTA S. Potential impacts of prebiotics and probiotics in cancer prevention[J]. Anti-Cancer Agents in Medicinal Chemistry,2020:21.
    [7]
    FIOCCO D, LONGO A, ARENA M P, et al. How probiotics face food stress: They get by with a little help[J]. Critical Reviews in Food Science and Nutrition,2020,60(9):1552−1580. doi: 10.1080/10408398.2019.1580673
    [8]
    SHIMIZU T, KOREHISA T, IMANAKA H, et al. Characteristics of proteinaceous additives in stabilizing enzymes during freeze-thawing and -drying[J]. Bioscience, Biotechnology, and Biochemistry,2017,81(4):687−697. doi: 10.1080/09168451.2016.1274637
    [9]
    AOUDIA N, RIEU A, BRIANDET R, et al. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties[J]. Food Microbiology,2016,53:51−59. doi: 10.1016/j.fm.2015.04.009
    [10]
    CAPOZZI V, FIOCCO D, SPANO G. Responses of lactic acid bacteria to cold stress[M]. Boston, MA: Springer US, 2011: 91−110.
    [11]
    PANOFF J M, THAMMAVONGS B, GUÉGUEN M, et al. Cold stress responses in mesophilic bacteria[J]. Cryobiology,1998,36(2):75−83. doi: 10.1006/cryo.1997.2069
    [12]
    CAVICCHIOLI R, THOMAS T, CURMI P M G. Cold stress response in archaea[J]. Extremophiles,2000,4(6):321−331. doi: 10.1007/s007920070001
    [13]
    MENEGHEL J, PASSOT S, DUPONT S, et al. Biophysical characterization of the Lactobacillus delbrueckii subsp. bulgaricus membrane during cold and osmotic stress and its relevance for cryopreservation[J]. Applied Microbiology and Biotechnology,2017,101(4):1427−1441. doi: 10.1007/s00253-016-7935-4
    [14]
    MAZUR P, LEIBO S P, CHU E H Y. A two-factor hypothesis of freezing injury[J]. Experimental Cell Research,1972,71(2):345−355. doi: 10.1016/0014-4827(72)90303-5
    [15]
    KARLSSON, J O M, CRAVALHO E G, et al. Intracellular ice formation: Causes and consequences[J]. Cryo Lett,1993,14:323−335.
    [16]
    FONSECA F, CENARD S, PASSOT S. Freeze-drying of lactic acid bacteria[M]. New York: Springer New York, 2015: 477−488.
    [17]
    BEALES N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2004,3(1):1−20. doi: 10.1111/j.1541-4337.2004.tb00057.x
    [18]
    TRIBELLI P, LÓPEZ N. Reporting key features in cold-adapted bacteria[J]. Life,2018,8(1):8. doi: 10.3390/life8010008
    [19]
    ZHANG X, LI Z, PANG S, et al. The impact of cell structure, metabolism and group behavior for the survival of bacteria under stress conditions[J]. Archives of Microbiology,2021,203(2):431−441. doi: 10.1007/s00203-020-02050-3
    [20]
    WANG G Q, PU J, YU X Q, et al. Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains[J]. Journal of Dairy Science,2020,103(4):3066−3075. doi: 10.3168/jds.2019-17685
    [21]
    BAKERMANS C. Determining the limits of microbial life at subzero temperatures[M]. Cham: Springer International Publishing, 2017: 21-38.
    [22]
    PAPADIMITRIOU K, ALEGRÍA Á, BRON P A, et al. Stress physiology of lactic acid bacteria[J]. Microbiology and Molecular Biology Reviews,2016,80(3):837−890. doi: 10.1128/MMBR.00076-15
    [23]
    GUPTA S K, KATAKI S, CHATTERJEE S, et al. Cold adaptation in bacteria with special focus on cellulase production and its potential application[J]. Journal of Cleaner Production,2020,258:120351. doi: 10.1016/j.jclepro.2020.120351
    [24]
    JUNG Y H, LEE Y K, LEE H K, et al. CspB of an arctic bacterium, Polaribacter irgensii Kopri 22228, confers extraordinary freeze-tolerance freeze-tolerance[J]. Brazilian Journal of Microbiology,2018,49(1):97−103. doi: 10.1016/j.bjm.2017.04.006
    [25]
    MBYE M, BAIG M A, ABUQAMAR S F, et al. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(3):1110−1124. doi: 10.1111/1541-4337.12554
    [26]
    SONG S, BAE D W, LIM K, et al. Cold stress improves the ability of Lactobacillus plantarum l67 to survive freezing[J]. International Journal of Food Microbiology,2014,191:135−143. doi: 10.1016/j.ijfoodmicro.2014.09.017
    [27]
    POLO L, MAÑES LÁZARO R, OLMEDA I, et al. Influence of freezing temperatures prior to freeze-drying on viability of yeasts and lactic acid bacteria isolated from wine[J]. Journal of Applied Microbiology,2017,122(6):1603−1614. doi: 10.1111/jam.13465
    [28]
    HANY S G, JAMES S, JOHN B, et al. Microbial stress adaptation and food safety[M]. Boca Raton, FL: CRC Press, 2003: 8.
    [29]
    吴文茹, 汪政煜, 范梦茹, 等. 乳酸菌的抗冷冻性及冻干保护[J]. 食品工业,2017,38(5):246−249. [WU W R, WANG Z Y, FAN M R, et al. Freezing resistance and freeze-drying protection of lactic acid bacteria[J]. Food Industry,2017,38(5):246−249.
    [30]
    邵玉宇, 陈霞, 杨梅, 等. 乳酸菌的抗冷冻性及耐受机理[J]. 微生物学通报,2010,37(2):274−279. [SHAO Y Y, CHEN X, YANG M, et al. Freeze resistance and tolerance mechanism of lactic acid bacteria[J]. Bulletin of Microbiology,2010,37(2):274−279.
    [31]
    吴先帆, 崔艳华. 乳酸菌的抗冻机制及抗冻能力研究[J]. 中国乳品工业,2014,42(2):35−37,57. [WU X F, CUI Y H. Study on the antifreeze mechanism and antifreeze ability of lactic acid bacteria[J]. China Dairy Industry,2014,42(2):35−37,57. doi: 10.3969/j.issn.1001-2230.2014.02.009
    [32]
    MIZUSHIMA T, KATAOKA K, OGATA Y, et al. Increase in negative supercoiling of plasmid dna in Escherichia coli exposed to cold shock[J]. Molecular Microbiology,1997,23(2):381−386. doi: 10.1046/j.1365-2958.1997.2181582.x
    [33]
    COLLINS T, MARGESIN R. Psychrophilic lifestyles: Mechanisms of adaptation and biotechnological tools[J]. Applied Microbiology and Biotechnology,2019,103(7):2857−2871. doi: 10.1007/s00253-019-09659-5
    [34]
    CORCORAN B, STANTON C, FITZGERALD G, et al. Life under stress: The probiotic stress response and how it may be manipulated[J]. Current Pharmaceutical Design,2008,14(14):1382−1399. doi: 10.2174/138161208784480225
    [35]
    WOUTERS J A, SANDERS J W, KOK J, et al. Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363[J]. Microbiology,1998,144:2885−2893. doi: 10.1099/00221287-144-10-2885
    [36]
    GAMAR L, BLONDEAU K, SIMONET J M. Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain c83[J]. Journal of Applied Microbiology,1998,83(3):281−287.
    [37]
    STREIT F, CORRIEU G, BÉAL C. Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus cfl1[J]. Journal of Biotechnology,2007,128(3):659−667. doi: 10.1016/j.jbiotec.2006.11.012
    [38]
    BEAL C, FONSECA F, CORRIEU G. Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition[J]. Journal of Dairy Science,2001,84(11):2347−2356. doi: 10.3168/jds.S0022-0302(01)74683-8
    [39]
    ŠAJBIDOR J. Effect of some environmental factors on the content and composition of microbial membrane lipids[J]. Critical Reviews in Biotechnology,1997,17(2):87−103. doi: 10.3109/07388559709146608
    [40]
    FONSECA F, PÉNICAUD C, TYMCZYSZYN E E, et al. Factors influencing the membrane fluidity and the impact on production of lactic acid bacteria starters[J]. Applied Microbiology and Biotechnology,2019,103(17):6867−6883. doi: 10.1007/s00253-019-10002-1
    [41]
    VELLY H, BOUIX M, PASSOT S, et al. Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis tomsc161[J]. Applied Microbiology and Biotechnology,2015,99(2):907−918. doi: 10.1007/s00253-014-6152-2
    [42]
    张琦, 王志, 何仕武, 等. 多不饱和脂肪酸对微生物低温适应性的影响[J]. 生命科学,2012,24(1):58−62. [ZHANG Q, WANG Z, HE S W, et al. Effects of polyunsaturated fatty acids on low temperature adaptability of microorganisms[J]. Life Sciences,2012,24(1):58−62.
    [43]
    SUZUKI I. The pathway for perception and transduction of low-temperature signals in Synechocystis[J]. The EMBO Journal,2000,19(6):1327−1334. doi: 10.1093/emboj/19.6.1327
    [44]
    BARRIA C, MALECKI M, ARRAIANO C M. Bacterial adaptation to cold[J]. Microbiology,2013,159(Pt_12):2437−2443. doi: 10.1099/mic.0.052209-0
    [45]
    BUCKA KOLENDO J, SOKOŁOWSKA B. Lactic acid bacteria stress response to preservation processes in the beverage and juice industry[J]. Acta Biochimica Polonica,2017,64(3):459−464. doi: 10.18388/abp.2017_1496
    [46]
    PHADTARE S. Nucleic acid melting by Escherichia coli cspe[J]. Nucleic Acids Research,2005,33(17):5583−5590. doi: 10.1093/nar/gki859
    [47]
    BROADBENT J R, LIN C. Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization[J]. Cryobiology,1999,39(1):88−102. doi: 10.1006/cryo.1999.2190
    [48]
    KIM W S, DUNN N W. Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance[J]. Current Microbiology,1997,35(1):59−63. doi: 10.1007/s002849900212
    [49]
    FONSECA F, MENEGHEL J, CENARD S, et al. Determination of intracellular vitrification temperatures for unicellular micro organisms under conditions relevant for cryopreservation[J]. PLoS One,2016,11(4):e0152939. doi: 10.1371/journal.pone.0152939
    [50]
    LI B, TIAN F, LIU X, et al. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226[J]. Applied Microbiology and Biotechnology,2011,92(3):609−616. doi: 10.1007/s00253-011-3269-4
    [51]
    LINDAE A, EBERLE R J, CARUSO I P, et al. Expression, purification and characterization of cold shock protein a of Corynebacterium pseudotuberculosis[J]. Protein Expression and Purification,2015,112:15−20. doi: 10.1016/j.pep.2015.04.006
    [52]
    CHEN M J, TANG H Y, CHIANG M L. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens m1[J]. Food Microbiology,2017,66:20−27. doi: 10.1016/j.fm.2017.03.020
    [53]
    FONSECA F, BÉAL C, CORRIEU G. Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage[J]. Journal of Dairy Research,2000,67(1):83−90. doi: 10.1017/S002202999900401X
  • Cited by

    Periodical cited type(8)

    1. 滕薇,刘树滔,吴金鸿,张勇. 透明质酸的制备、功能特性及其调节肠道健康的研究进展. 中国食品学报. 2024(07): 401-413 .
    2. 廖曦,刘雨薇,冯金华,李卡. 透明质酸水凝胶在医用导管表面改性的应用进展. 中国医疗器械杂志. 2023(02): 173-177 .
    3. 张泽华,刘志林,陈晨. 超小分子透明质酸功效性能测试. 日用化学品科学. 2023(05): 29-34 .
    4. 滕薇,刘俊辉,吴金鸿,刘树滔. 酶解—膜分离耦合连续制备抗氧化性小分子透明质酸. 食品与机械. 2023(12): 162-170 .
    5. 李慧凝,张京良,杨艮,江晓路. 酶法制备透明质酸寡糖及其透皮吸收活性研究. 食品工业科技. 2022(06): 77-82 . 本站查看
    6. 石晶,冯云,包杰,樊建茹,徐桂云,范金石. 天然生物质材料的制备、性质与应用(Ⅲ)——医护两用的糖胺聚糖:透明质酸. 日用化学工业. 2022(03): 237-244 .
    7. 郑博文,王斌雅,肖婉玲,孙亚娟,赵炳天,杨成. 基于蛋白质组学的透明质酸寡聚糖抗炎活性研究及验证. 食品与发酵工业. 2022(14): 33-38 .
    8. 张洛瑜,崔云前,郝晨晓,李雅晖. 透明质酸啤酒的研究概况. 食品科技. 2022(08): 43-46 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (222) PDF downloads (21) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return