ZHAO Dongmei, CHU Xiaoyu, ZHANG Yong, et al. Research Progress of Food Packaging Materials Based on Cellulose[J]. Science and Technology of Food Industry, 2022, 43(5): 432−439. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030077.
Citation: ZHAO Dongmei, CHU Xiaoyu, ZHANG Yong, et al. Research Progress of Food Packaging Materials Based on Cellulose[J]. Science and Technology of Food Industry, 2022, 43(5): 432−439. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030077.

Research Progress of Food Packaging Materials Based on Cellulose

More Information
  • Received Date: March 07, 2021
  • Available Online: December 30, 2021
  • Most of cellulose comes from plants and microorganisms. It has excellent biodegradability and mechanical properties, and can be widely used in green food packaging materials. In this paper, the extraction and modification methods of lignocellulose, microfibril cellulose and bacterial cellulose from plants and microorganisms, as well as the related research on their mechanical properties, barrier properties, antibacterial properties and degradation properties in food packaging materials are reviewed. As a food packaging material, cellulose not only expands the application field of cellulose, but also provides a guarantee for food safety and environmental protection. It is believed that with the continuous progress of cellulose extraction and modification technology, the application of cellulose in the food packaging field will attract much attention in the future.
  • [1]
    NEMAT B, RAZZAGHI M, BOLTON K, et al. The potential of food packaging attributes to influence consumers' decisions to sort waste[J]. Sustainability,2020,12:2234−2256. doi: 10.3390/su12062234
    [2]
    陈凯. 食品包装材料对食品安全的影响[J]. 食品安全导刊,2020,264(3):35. [CHEN K. Influence of food packaging materials on food safety[J]. Food Safety Guide,2020,264(3):35.
    [3]
    汪丰云, 沐小龙, 吴凤兮等. 食品包装中的化学问题[J]. 化学教育,2011,32(1):1−3. [WANG F Y, MU X L, WU F X. Chemical problems in food packaging[J]. Chemistry Education,2011,32(1):1−3. doi: 10.3969/j.issn.1003-3807.2011.01.001
    [4]
    ANNA PAULA AZEVEDO DE CARVALHO A B C, CARLOS ADAM CONTE JUNIOR A B C D. Green strategies for active food packagings: A systematic review on active properties of graphene-based nanomaterials and biodegradable polymers[J]. Trends in Food Science & Technology,2020,103:130−143.
    [5]
    樊聪, 李双劲, 罗代璋, 等. 绿色包装设计理念在食品包装中的运用[J]. 绿色包装,2020,57(9):67−68. [FAN C, LI S J, LUO D Z, et al. Application of green packaging design concept in food packaging[J]. Green Packaging,2020,57(9):67−68.
    [6]
    周兴满. 纤维素的改性及其在食品包装中的应用[D]. 福州: 福建农林大学, 2016.

    ZHOU X M. Modification of cellulose and its application in food packaging[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.
    [7]
    COUGHLIN M, LIBERMAN L, ERTEM S P, et al. Methyl cellulose solutions and gels: Fibril formation and gelation properties[J]. Progress in Polymer Science,2020,112(2021):1−18.
    [8]
    PETROUDY S R D, RAHMANI N, GARMAROODY E R, et al. Comparative study of cellulose and lignocellulose nanopapers prepared from hard wood pulps: Morphological, structural and barrier properties[J]. International Journal of Biological Macromolecules,2019,135:512−520. doi: 10.1016/j.ijbiomac.2019.05.212
    [9]
    SIRVIO J A, LIIMATAINEN H, NIINIMAKI J, et al. Sustainable packaging materials based on wood cellulose[J]. Royal Society of Chemistry Advances,2013,3(37):16590−16596.
    [10]
    BUMBUDSANPHAROKE N, KO S. The green fabrication, characterization and evaluation of catalytic antioxidation of gold nanoparticle-lignocellulose composite papers for active packaging[J]. International Journal of Biological Macromolecules,2018,107:1782−1791. doi: 10.1016/j.ijbiomac.2017.10.046
    [11]
    JIN Z W, WANG S, WANG J Q, et al. The fabrication and characterization of cellulose/mesoporous silica composites packaging films with adjustable permeability by NMMO technology[J]. Polymer Plastics Technology & Engineering,2010,49:1371−1377.
    [12]
    MIHALYCOZMUTA A, PETER A, CRACIUN G, et al. Preparation and characterization of active cellulose-based papers modified with TiO2, Ag and zeolite nanocomposites for bread packaging application[J]. Cellulose,2017(1):1−18.
    [13]
    芬兰VTT技术研究中心. VTT热塑性纤维素材料[J], 中华纸业. 2020, 41(10): 76−76.

    VTT Technology Research Center of Finland. VTT thermoplastic cellulose material[J]. 2020, 41(10): 76−76.
    [14]
    亦森. 微纤维状纤维素[J]. 粮食与油脂,1999(4):254−256. [YI S. Microfiber cellulose[J]. Grain and Oil,1999(4):254−256.
    [15]
    JAYAPRADA M, UMAPATHY M J. Preparation and properties of a microfibrillated cellulose reinforced pectin/fenugreek gum biocomposite[J]. New Journal of Chemistry,2020,44:18792−18802. doi: 10.1039/D0NJ03101A
    [16]
    LAVOINE N, DESLOGES I, BRAS J. Microfibrillated cellulose coatings as new release systems for active packaging[J]. Carbohydrate Polymers,2014,103:528−537. doi: 10.1016/j.carbpol.2013.12.035
    [17]
    POPOV V, HINKOV I, DIANKOV S, et al. Ultrasound-assisted green synthesis of silver nanoparticles and their incorporation in antibacterial cellulose packaging[J]. Green Process Synth,2015,4:125−131.
    [18]
    LAVOINE N, GIVORD C, TABARY N, et al. Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose[J]. Innovative Food Science & Emerging Technologies,2014,26:330−340.
    [19]
    LAVOINE N, DESLOGES I, MANSHIP B, et al. Antibacterial paperboard packaging using microfibrillated cellulose[J]. Journal of Food Science and Technology,2015,52(9):5590−5600. doi: 10.1007/s13197-014-1675-1
    [20]
    APJOK R, COZMUTA A M, PETER A, et al. Active packaging based on cellulose-chitosan-Ag/TiO2 nanocomposite for storage of clarified butter[J]. Cellulose,2019,26:1923−1946. doi: 10.1007/s10570-018-02226-7
    [21]
    COZZOLINO C A, NILSSON F, IOTTI M, et al. Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging[J]. Colloids and Surfaces B: Biointerfaces,2013,110:208−216. doi: 10.1016/j.colsurfb.2013.04.046
    [22]
    POPA E E, RAPA M, POPA O, et al. Polylactic acid/cellulose fibres based composites for food packaging applications[J]. Materiale Plastice,2017,54:673−677. doi: 10.37358/MP.17.4.4923
    [23]
    RODIONOVA G, LENES M, ERIKSEN Ø, et al. Surface chemical modification of microfibrillatedcellulose: Improvement of barrier properties for packaging applications[J]. Cellulose,2011,18(1):127−134. doi: 10.1007/s10570-010-9474-y
    [24]
    SPENCE K L, VENDITTI R A, ROJAS O J, et al. The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications[J]. Cellulose,2010,17(4):835−848. doi: 10.1007/s10570-010-9424-8
    [25]
    LAVOINE N, BRAS J, DESLOGES I. Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose[J]. Journal of Applied Polymer Science,2014,131(8):1−11.
    [26]
    SIRVIÖ J A, KOLEHMAINEN A, LIIMATAINEN H, et al. Biocomposite cellulose-alginate films: Promising packaging materials[J]. Food Chemistry,2014,151:343−351. doi: 10.1016/j.foodchem.2013.11.037
    [27]
    BOUHOUTE M, TAARJI N, FELIPE L D O, et al. Microfibrillated cellulose from Argania spinosa shells as sustainable solid particles for O/W pickering emulsions[J]. Carbohydrate Polymers,2020,251:116990.
    [28]
    MASMOUDI F, BESSADOK A, DAMMAK M, et al. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose[J]. Environmental Science and Pollution Research,2016,23(20):1−11.
    [29]
    SONIA A, PRIYA DASAN K. Celluloses microfibers (CMF)/poly (ethylene-co-vinyl acetate) (EVA) composites for food packaging, applications: A study based on barrier and biodegradation behavior[J]. Journal of Food Engineer,2013,118(1):78−89. doi: 10.1016/j.jfoodeng.2013.03.020
    [30]
    SONIA A K, DASAN K P. Feasibility studies of cellulose microfiber (CMF) reinforced poly(ethylene-co-vinyl acetate) (EVA) composites for food packaging applications[J]. Science and Engineering of Composite Materials,2016,23(5):489−494. doi: 10.1515/secm-2014-0252
    [31]
    ANAND RAJ L F A, SHANMUGAPRIYA R, JESLIN J. Biosynthesis of cellulose microfibre from peanut shell for the preparation of bio-nanocomposite films for food-packaging application[J]. Bulletin of Materials Science,2019,42:63−72. doi: 10.1007/s12034-019-1751-2
    [32]
    马丽娜, 石川, 赵宁, 等. 细菌纤维素基纳米生物材料在储能领域的应用[J]. 无机材料学报,2020,35(2):145−157. [MA L N, SHI C, ZHAO N, et al. Application of bacterial cellulose based nanobiomaterials in energy storage[J]. Journal of inorganic materials,2020,35(2):145−157.
    [33]
    DHAR P, SUGIMURA K, YOSHINAGA M, et al. Synthesis-property-performance relationships of multifunctional bacterial cellulose composites fermented in situ alkali lignin medium[J]. Carbohydrate Polymers,2021,252:117114. doi: 10.1016/j.carbpol.2020.117114
    [34]
    ROLLINI M, MUSATTI A, CAVICCHIOLI D, et al. From cheese whey permeate to sakacin-A/bacterial cellulose nanocrystal conjugates for antimicrobial food packaging applications: A circular economy case study[J]. Scientific Reports,2020,10:21358. doi: 10.1038/s41598-020-78430-y
    [35]
    PADRãO J, GONCALVES S, SILVA J P, et al. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging[J]. Food Hydrocolloids,2016,58:126−140. doi: 10.1016/j.foodhyd.2016.02.019
    [36]
    VILELA C, MOREIRINHA C, DOMINGUES E M, et al. Antimicrobial and conductive nanocellulose-based films for active and intelligent food packaging[J]. Nanomaterials,2019,9(7):980−996. doi: 10.3390/nano9070980
    [37]
    CHOUDHARY P, JAISWAL A, SINGH S, et al. Bacterial cellulose based composites: Preparation and characterization[C]// Materials Science Forum, 2020, 978: 183-190.
    [38]
    CAZÓN P, VAZQUEZ M, VELAZQUEZ G. Environmentally friendly films combining bacterial cellulose, chitosan, and polyvinyl alcohol: Effect of water activity on barrier, mechanical, and optical properties[J]. Biomacromolecules,2020,21(2):753−760. doi: 10.1021/acs.biomac.9b01457
    [39]
    LI Q, GAO R H, WANG L Y, et al. Nanocomposites of bacterial cellulose nanofibrils and zein nanoparticles for food packaging[J]. ACS Applied Nano Materials,2020,3(3):2899−2910. doi: 10.1021/acsanm.0c00159
    [40]
    SMARAK B, NABANITA S, URŠKA V B, et al. Bacterial cellulose based greener packagingmaterial: A bioadhesive polymeric film[J]. Materials Research Express,2018,5:115405. doi: 10.1088/2053-1591/aadb01
    [41]
    STOICA-GUZUN A, STROESCU M, JIPA I, et al. Effect of γ irradiation on poly (vinyl alcohol) and bacterial cellulose composites used as packaging materials[J]. Radiation Physics and Chemistry,2013,84:200−204. doi: 10.1016/j.radphyschem.2012.06.017
    [42]
    SOMMER A, STAROSZCZYK H, SINKIEWICZ I, et al. Preparation and characterization of films based on disintegrated bacterial cellulose and montmorillonite[J]. Journal of Polymers and the Environment,2021,29:1526−1541. doi: 10.1007/s10924-020-01968-5
    [43]
    KUSWANDI B, ASIH N P N, PRATOKO D K, et al. Edible pH sensor based on immobilized red cabbage anthocyanins into bacterial cellulose membrane for intelligent food packaging[J]. Packaging Technology and Science,2020,33:1−12. doi: 10.1002/pts.2453
    [44]
    PIRSA S, SHAMUSI T. Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film[J]. Materials Science & Engineering,2019(102):798−809.
    [45]
    MA X, CHEN Y, HUANG J, et al. In situ formed active and intelligent bacterial cellulose/cotton fiber composite containing curcumin[J]. Cellulose,2020,27(16):1−12.
    [46]
    CAZON P, VÁZQUEZ M. Bacterial cellulose as a biodegradable food packaging material: A review[J]. Food Hydrocolloids,2021,113:106530. doi: 10.1016/j.foodhyd.2020.106530
    [47]
    UMMARTYOTIN S, PISITSAK P, PECHYEN C. Eggshell and bacterial cellulose composite membrane as absorbent material in active packaging[J]. International Journal of Polymer Science,2016,5:1−8.
    [48]
    ZAHAN K A, AZIZUL N M, MUSTAPHA M, et al. Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material[J]. Materials Today: Proceedings,2020,31(1):83−88.
  • Cited by

    Periodical cited type(4)

    1. 杨宇恒,郑宇航,王文卓,刘芳,张新笑,孙芝兰. 真空包装鸡肉肠产气微生物分离鉴定及胀袋原因探析. 肉类研究. 2024(04): 36-42 .
    2. 胡文静,刘小雪,梁栋,焦凌霞. 肌苷对酸土脂环酸芽孢杆菌生长及生物膜形成的影响. 中国食品学报. 2023(09): 242-251 .
    3. 许育民,任兰兰,张颖,刘亚慧,王海花,张晓静,张晓峰. 抗食源性病原菌细菌素的筛选及特性研究. 食品安全质量检测学报. 2022(04): 1170-1175 .
    4. 刘小杰,舒志成,赵志红,左迪. 调节血脂保健粥的研制. 食品工业科技. 2021(22): 240-245 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (641) PDF downloads (61) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return