Citation: | ZHAO Dongmei, CHU Xiaoyu, ZHANG Yong, et al. Research Progress of Food Packaging Materials Based on Cellulose[J]. Science and Technology of Food Industry, 2022, 43(5): 432−439. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030077. |
[1] |
NEMAT B, RAZZAGHI M, BOLTON K, et al. The potential of food packaging attributes to influence consumers' decisions to sort waste[J]. Sustainability,2020,12:2234−2256. doi: 10.3390/su12062234
|
[2] |
陈凯. 食品包装材料对食品安全的影响[J]. 食品安全导刊,2020,264(3):35. [CHEN K. Influence of food packaging materials on food safety[J]. Food Safety Guide,2020,264(3):35.
|
[3] |
汪丰云, 沐小龙, 吴凤兮等. 食品包装中的化学问题[J]. 化学教育,2011,32(1):1−3. [WANG F Y, MU X L, WU F X. Chemical problems in food packaging[J]. Chemistry Education,2011,32(1):1−3. doi: 10.3969/j.issn.1003-3807.2011.01.001
|
[4] |
ANNA PAULA AZEVEDO DE CARVALHO A B C, CARLOS ADAM CONTE JUNIOR A B C D. Green strategies for active food packagings: A systematic review on active properties of graphene-based nanomaterials and biodegradable polymers[J]. Trends in Food Science & Technology,2020,103:130−143.
|
[5] |
樊聪, 李双劲, 罗代璋, 等. 绿色包装设计理念在食品包装中的运用[J]. 绿色包装,2020,57(9):67−68. [FAN C, LI S J, LUO D Z, et al. Application of green packaging design concept in food packaging[J]. Green Packaging,2020,57(9):67−68.
|
[6] |
周兴满. 纤维素的改性及其在食品包装中的应用[D]. 福州: 福建农林大学, 2016.
ZHOU X M. Modification of cellulose and its application in food packaging[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.
|
[7] |
COUGHLIN M, LIBERMAN L, ERTEM S P, et al. Methyl cellulose solutions and gels: Fibril formation and gelation properties[J]. Progress in Polymer Science,2020,112(2021):1−18.
|
[8] |
PETROUDY S R D, RAHMANI N, GARMAROODY E R, et al. Comparative study of cellulose and lignocellulose nanopapers prepared from hard wood pulps: Morphological, structural and barrier properties[J]. International Journal of Biological Macromolecules,2019,135:512−520. doi: 10.1016/j.ijbiomac.2019.05.212
|
[9] |
SIRVIO J A, LIIMATAINEN H, NIINIMAKI J, et al. Sustainable packaging materials based on wood cellulose[J]. Royal Society of Chemistry Advances,2013,3(37):16590−16596.
|
[10] |
BUMBUDSANPHAROKE N, KO S. The green fabrication, characterization and evaluation of catalytic antioxidation of gold nanoparticle-lignocellulose composite papers for active packaging[J]. International Journal of Biological Macromolecules,2018,107:1782−1791. doi: 10.1016/j.ijbiomac.2017.10.046
|
[11] |
JIN Z W, WANG S, WANG J Q, et al. The fabrication and characterization of cellulose/mesoporous silica composites packaging films with adjustable permeability by NMMO technology[J]. Polymer Plastics Technology & Engineering,2010,49:1371−1377.
|
[12] |
MIHALYCOZMUTA A, PETER A, CRACIUN G, et al. Preparation and characterization of active cellulose-based papers modified with TiO2, Ag and zeolite nanocomposites for bread packaging application[J]. Cellulose,2017(1):1−18.
|
[13] |
芬兰VTT技术研究中心. VTT热塑性纤维素材料[J], 中华纸业. 2020, 41(10): 76−76.
VTT Technology Research Center of Finland. VTT thermoplastic cellulose material[J]. 2020, 41(10): 76−76.
|
[14] |
亦森. 微纤维状纤维素[J]. 粮食与油脂,1999(4):254−256. [YI S. Microfiber cellulose[J]. Grain and Oil,1999(4):254−256.
|
[15] |
JAYAPRADA M, UMAPATHY M J. Preparation and properties of a microfibrillated cellulose reinforced pectin/fenugreek gum biocomposite[J]. New Journal of Chemistry,2020,44:18792−18802. doi: 10.1039/D0NJ03101A
|
[16] |
LAVOINE N, DESLOGES I, BRAS J. Microfibrillated cellulose coatings as new release systems for active packaging[J]. Carbohydrate Polymers,2014,103:528−537. doi: 10.1016/j.carbpol.2013.12.035
|
[17] |
POPOV V, HINKOV I, DIANKOV S, et al. Ultrasound-assisted green synthesis of silver nanoparticles and their incorporation in antibacterial cellulose packaging[J]. Green Process Synth,2015,4:125−131.
|
[18] |
LAVOINE N, GIVORD C, TABARY N, et al. Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose[J]. Innovative Food Science & Emerging Technologies,2014,26:330−340.
|
[19] |
LAVOINE N, DESLOGES I, MANSHIP B, et al. Antibacterial paperboard packaging using microfibrillated cellulose[J]. Journal of Food Science and Technology,2015,52(9):5590−5600. doi: 10.1007/s13197-014-1675-1
|
[20] |
APJOK R, COZMUTA A M, PETER A, et al. Active packaging based on cellulose-chitosan-Ag/TiO2 nanocomposite for storage of clarified butter[J]. Cellulose,2019,26:1923−1946. doi: 10.1007/s10570-018-02226-7
|
[21] |
COZZOLINO C A, NILSSON F, IOTTI M, et al. Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging[J]. Colloids and Surfaces B: Biointerfaces,2013,110:208−216. doi: 10.1016/j.colsurfb.2013.04.046
|
[22] |
POPA E E, RAPA M, POPA O, et al. Polylactic acid/cellulose fibres based composites for food packaging applications[J]. Materiale Plastice,2017,54:673−677. doi: 10.37358/MP.17.4.4923
|
[23] |
RODIONOVA G, LENES M, ERIKSEN Ø, et al. Surface chemical modification of microfibrillatedcellulose: Improvement of barrier properties for packaging applications[J]. Cellulose,2011,18(1):127−134. doi: 10.1007/s10570-010-9474-y
|
[24] |
SPENCE K L, VENDITTI R A, ROJAS O J, et al. The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications[J]. Cellulose,2010,17(4):835−848. doi: 10.1007/s10570-010-9424-8
|
[25] |
LAVOINE N, BRAS J, DESLOGES I. Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose[J]. Journal of Applied Polymer Science,2014,131(8):1−11.
|
[26] |
SIRVIÖ J A, KOLEHMAINEN A, LIIMATAINEN H, et al. Biocomposite cellulose-alginate films: Promising packaging materials[J]. Food Chemistry,2014,151:343−351. doi: 10.1016/j.foodchem.2013.11.037
|
[27] |
BOUHOUTE M, TAARJI N, FELIPE L D O, et al. Microfibrillated cellulose from Argania spinosa shells as sustainable solid particles for O/W pickering emulsions[J]. Carbohydrate Polymers,2020,251:116990.
|
[28] |
MASMOUDI F, BESSADOK A, DAMMAK M, et al. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose[J]. Environmental Science and Pollution Research,2016,23(20):1−11.
|
[29] |
SONIA A, PRIYA DASAN K. Celluloses microfibers (CMF)/poly (ethylene-co-vinyl acetate) (EVA) composites for food packaging, applications: A study based on barrier and biodegradation behavior[J]. Journal of Food Engineer,2013,118(1):78−89. doi: 10.1016/j.jfoodeng.2013.03.020
|
[30] |
SONIA A K, DASAN K P. Feasibility studies of cellulose microfiber (CMF) reinforced poly(ethylene-co-vinyl acetate) (EVA) composites for food packaging applications[J]. Science and Engineering of Composite Materials,2016,23(5):489−494. doi: 10.1515/secm-2014-0252
|
[31] |
ANAND RAJ L F A, SHANMUGAPRIYA R, JESLIN J. Biosynthesis of cellulose microfibre from peanut shell for the preparation of bio-nanocomposite films for food-packaging application[J]. Bulletin of Materials Science,2019,42:63−72. doi: 10.1007/s12034-019-1751-2
|
[32] |
马丽娜, 石川, 赵宁, 等. 细菌纤维素基纳米生物材料在储能领域的应用[J]. 无机材料学报,2020,35(2):145−157. [MA L N, SHI C, ZHAO N, et al. Application of bacterial cellulose based nanobiomaterials in energy storage[J]. Journal of inorganic materials,2020,35(2):145−157.
|
[33] |
DHAR P, SUGIMURA K, YOSHINAGA M, et al. Synthesis-property-performance relationships of multifunctional bacterial cellulose composites fermented in situ alkali lignin medium[J]. Carbohydrate Polymers,2021,252:117114. doi: 10.1016/j.carbpol.2020.117114
|
[34] |
ROLLINI M, MUSATTI A, CAVICCHIOLI D, et al. From cheese whey permeate to sakacin-A/bacterial cellulose nanocrystal conjugates for antimicrobial food packaging applications: A circular economy case study[J]. Scientific Reports,2020,10:21358. doi: 10.1038/s41598-020-78430-y
|
[35] |
PADRãO J, GONCALVES S, SILVA J P, et al. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging[J]. Food Hydrocolloids,2016,58:126−140. doi: 10.1016/j.foodhyd.2016.02.019
|
[36] |
VILELA C, MOREIRINHA C, DOMINGUES E M, et al. Antimicrobial and conductive nanocellulose-based films for active and intelligent food packaging[J]. Nanomaterials,2019,9(7):980−996. doi: 10.3390/nano9070980
|
[37] |
CHOUDHARY P, JAISWAL A, SINGH S, et al. Bacterial cellulose based composites: Preparation and characterization[C]// Materials Science Forum, 2020, 978: 183-190.
|
[38] |
CAZÓN P, VAZQUEZ M, VELAZQUEZ G. Environmentally friendly films combining bacterial cellulose, chitosan, and polyvinyl alcohol: Effect of water activity on barrier, mechanical, and optical properties[J]. Biomacromolecules,2020,21(2):753−760. doi: 10.1021/acs.biomac.9b01457
|
[39] |
LI Q, GAO R H, WANG L Y, et al. Nanocomposites of bacterial cellulose nanofibrils and zein nanoparticles for food packaging[J]. ACS Applied Nano Materials,2020,3(3):2899−2910. doi: 10.1021/acsanm.0c00159
|
[40] |
SMARAK B, NABANITA S, URŠKA V B, et al. Bacterial cellulose based greener packagingmaterial: A bioadhesive polymeric film[J]. Materials Research Express,2018,5:115405. doi: 10.1088/2053-1591/aadb01
|
[41] |
STOICA-GUZUN A, STROESCU M, JIPA I, et al. Effect of γ irradiation on poly (vinyl alcohol) and bacterial cellulose composites used as packaging materials[J]. Radiation Physics and Chemistry,2013,84:200−204. doi: 10.1016/j.radphyschem.2012.06.017
|
[42] |
SOMMER A, STAROSZCZYK H, SINKIEWICZ I, et al. Preparation and characterization of films based on disintegrated bacterial cellulose and montmorillonite[J]. Journal of Polymers and the Environment,2021,29:1526−1541. doi: 10.1007/s10924-020-01968-5
|
[43] |
KUSWANDI B, ASIH N P N, PRATOKO D K, et al. Edible pH sensor based on immobilized red cabbage anthocyanins into bacterial cellulose membrane for intelligent food packaging[J]. Packaging Technology and Science,2020,33:1−12. doi: 10.1002/pts.2453
|
[44] |
PIRSA S, SHAMUSI T. Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film[J]. Materials Science & Engineering,2019(102):798−809.
|
[45] |
MA X, CHEN Y, HUANG J, et al. In situ formed active and intelligent bacterial cellulose/cotton fiber composite containing curcumin[J]. Cellulose,2020,27(16):1−12.
|
[46] |
CAZON P, VÁZQUEZ M. Bacterial cellulose as a biodegradable food packaging material: A review[J]. Food Hydrocolloids,2021,113:106530. doi: 10.1016/j.foodhyd.2020.106530
|
[47] |
UMMARTYOTIN S, PISITSAK P, PECHYEN C. Eggshell and bacterial cellulose composite membrane as absorbent material in active packaging[J]. International Journal of Polymer Science,2016,5:1−8.
|
[48] |
ZAHAN K A, AZIZUL N M, MUSTAPHA M, et al. Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material[J]. Materials Today: Proceedings,2020,31(1):83−88.
|
1. |
杨宇恒,郑宇航,王文卓,刘芳,张新笑,孙芝兰. 真空包装鸡肉肠产气微生物分离鉴定及胀袋原因探析. 肉类研究. 2024(04): 36-42 .
![]() | |
2. |
胡文静,刘小雪,梁栋,焦凌霞. 肌苷对酸土脂环酸芽孢杆菌生长及生物膜形成的影响. 中国食品学报. 2023(09): 242-251 .
![]() | |
3. |
许育民,任兰兰,张颖,刘亚慧,王海花,张晓静,张晓峰. 抗食源性病原菌细菌素的筛选及特性研究. 食品安全质量检测学报. 2022(04): 1170-1175 .
![]() | |
4. |
刘小杰,舒志成,赵志红,左迪. 调节血脂保健粥的研制. 食品工业科技. 2021(22): 240-245 .
![]() |