LI Jiayin, LUO Lei, XIONG Yingzi, et al. Application of Magnetic Nanoenzyme Colorimetric Technology in Food Safety Detection[J]. Science and Technology of Food Industry, 2022, 43(5): 416−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030042.
Citation: LI Jiayin, LUO Lei, XIONG Yingzi, et al. Application of Magnetic Nanoenzyme Colorimetric Technology in Food Safety Detection[J]. Science and Technology of Food Industry, 2022, 43(5): 416−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030042.

Application of Magnetic Nanoenzyme Colorimetric Technology in Food Safety Detection

More Information
  • Received Date: March 04, 2021
  • Available Online: January 03, 2022
  • Magnetic nanoenzyme color development technology is a new technology, which is used to rapid, sensitive, and visual detection of targets based on the peroxidase-like properties of magnetic nanoenzyme. Compared with natural enzymes, magnetic nanoenzyme has the advantages of easy preparation, preservation, recovery and low cost. In this paper, the catalytic mechanism and activity regulation of magnetic nanoenzyme are briefly introduced, the application of magnetic nanoenzyme chromogenic technology in the detection of pesticide and ceterinary drug residues, foodborne pathogens and other harmful substances in food are introduced emphatically. At present, the technology still has problems, such as weak enzyme activity, narrow detection range, and poor selectivity. Some suggestions are given for resolving above problems, and its future development direction is prospected.
  • [1]
    李芙蓉, 向发椿, 曹丽萍, 等. 纳米酶在食品检测中的应用研究进展[J/OL]. 食品科学: 1−18 [2021-12-21]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210205.1437.008.html.

    LI Furong, XIANG Fachun, CAO Liping, et al. Recent advances and applications of nanozymes in food assay[J/OL]. Food Science: 1−18 [2021-12-21]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210205.1437.008.html.
    [2]
    张娟娟. 我国食品安全快速检测技术发展现状探讨[J]. 现代食品,2019(8):166−168. [ZHANG Juanjuan. Discussion on the development status of rapid food safety detection technology in China[J]. Modern Food,2019(8):166−168.
    [3]
    MASIA A, SUAREZ M M, PICO Y, et al. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review[J]. Analytica Chimica Acta,2016,936:40−61. doi: 10.1016/j.aca.2016.07.023
    [4]
    刘硕, 郭培源, 杨昆程, 等. 色谱技术、光谱分析法和生物检测技术在食品安全检测方面的应用进展[J]. 食品安全质量检测学报,2015,6(8):3217−3223. [LIU Shuo, GUO Peiyuan, YANG Kuncheng, et al. Progress in food safety detection using chromatographic techniques, spectroscopic techniques, and biological detection technology[J]. Journal of Food Safety & Quality,2015,6(8):3217−3223.
    [5]
    李蕾, 李文进, 杨阳, 等. 表面等离子共振传感器快速检测农药残留的研究进展[J]. 食品安全质量检测学报,2013,4(2):321−327. [LI Lei, LI Wenjin, YANG Yang, et al. Research progress on the detection of pesticide residues by surface plasmon resonance sensor[J]. Journal of Food Safety & Quality,2013,4(2):321−327.
    [6]
    张琳. 快速检测技术在果蔬检测中的应用分析[J]. 中国果菜,2020,40(12):29−31,35. [ZHANG Lin. Analysis on the application of rapid detection technology in the detection of fruits and vegetables[J]. China Fruit & Vegetable,2020,40(12):29−31,35.
    [7]
    LIN Y H, REN J S, QU X G, et al. Catalytically active nanomaterials: A promising candidate for artificial enzymes[J]. Accounts of Chemical Research,2014,47(4):1097−1105.
    [8]
    罗成, 李艳, 龙建纲, 等. 纳米材料模拟酶的应用研究进展[J]. 中国科学:化学,2015,45(10):1026−1041. [LUO Cheng, LI Yan, LONG Jiangang, et al. Recent advances in applications of nanoparticles as enzyme mimetics[J]. Scientia Sinica (Chimica),2015,45(10):1026−1041.
    [9]
    MOHSINA H, KHALILR. Potential applications of peroxidases[J]. Food Chemistry,2009,115(4):1177−1186. doi: 10.1016/j.foodchem.2009.02.035
    [10]
    李俊容, 沈爱国, 胡继明, 等. 纳米酶及其分析检测应用研究进展[J]. 应用化学,2016,33(11):1245−1252. [LI Junrong, SHEN Aiguo, HU Jiming, et al. Research progress of nanozymes and its application in analysis[J]. Chinese Journal of Applied Chemistry,2016,33(11):1245−1252. doi: 10.11944/j.issn.1000-0518.2016.11.160327
    [11]
    ZHANG X L, LI G L, WU D, et al. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy[J]. Biosensors and Bioelectronics,2019,137:178−198. doi: 10.1016/j.bios.2019.04.061
    [12]
    HE W W, WAMER W, YIN J J, et al. Enzyme-like activity of nanomaterials[J]. Journal of Environmental Science and Health Part C-environmental Carcinogenesis & Ecotoxicology Reviews,2014,32(4):186−211.
    [13]
    BRESLOW R, OVERMAN L E. An "artificial enzyme" combining a metal catalytic group and a hydrophobic binding cavity[J]. Journal of the American Chemical Society,1970,92(4):1075−1077. doi: 10.1021/ja00707a062
    [14]
    MANEA F, HOUILLON FB, PASQUATO L, et al. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts[J]. Angewandte Chemie-International Edition,2004,43(45):6165−6169. doi: 10.1002/anie.200460649
    [15]
    罗成, 李艳, 龙建纲, 等. 四氧化三铁纳米颗粒过氧化物酶样活性的应用[J]. 科学通报,2015,60(35):3478−3488. [LUO Cheng, LI Yan, LONG Jiangang, et al. Applications of iron oxide nanoparticles as peroxidase mimetics[J]. Chinese Science Bulletin,2015,60(35):3478−3488.
    [16]
    HU Y, WANG J L, WU Y G, et al. A simple and rapid chemosensor for colorimetric detection of dimethoate pesticide based on the peroxidase-mimicking catalytic activity of gold nanoparticles[J]. Analytical Methods,2019,11(41):5337−5347. doi: 10.1039/C9AY01506J
    [17]
    SONG Y J, QU K G, ZHAO C, et al. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Advanced Materials,2010,22(19):2206−2210. doi: 10.1002/adma.200903783
    [18]
    TAN H L, LI Q, ZHOU Z C, et al. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity[J]. Analytica Chimica Acta,2015,856:90−95.
    [19]
    柳晶鑫, 徐江艳, 蒋红梅, 等. 磁纳米材料在环境污染物分析与去除研究中的应用[J]. 分析试验室,2020,39(11):1241−1253. [LIU Jingxin, XU Jiangyan, JIANG Hongmei, et al. Application of magnetic nanomaterials in the analysis and removal of environmental polltants[J]. Chinese Journal of Analysis Laboratory,2020,39(11):1241−1253.
    [20]
    尉枫, 韩晓军, 等. 纳米酶及其在生物医学检测领域的研究进展[J]. 分析化学,2021,49(4):581−592. [WEI Feng, HAN Xiaojun. Nanozymes and their application progress in biomedical detection[J]. Chinese Journal of Analytical Chemistry,2021,49(4):581−592. doi: 10.1016/S1872-2040(21)60092-0
    [21]
    GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology,2007,2(9):577−583. doi: 10.1038/nnano.2007.260
    [22]
    高利增, 阎锡蕴, 等. 纳米酶的发现与应用[J]. 生物化学与生物物理进展,2013,40(10):892−902. [GAO Lizeng, YAN Xiyun. Discovery and current application of nanozyme[J]. Progress in Biochemistry and Biophysics,2013,40(10):892−902.
    [23]
    马龙, 范克龙. 纳米酶和铁蛋白新特性的发现和应用[J]. 自然杂志,2020,42(1):1−11. [MA Long, FAN Kelong. The finding and application of the novel properties of nanozyme and ferritin[J]. Chinese Journal of Nature,2020,42(1):1−11. doi: 10.3969/j.issn.0253-9608.2020.01.001
    [24]
    PEREZ-BENITO JF. Iron(III)-hydrogen peroxide reaction: Kinetic evidence of a hydroxyl-mediated chain mechanism[J]. Journal of Physical Chemistry A,2004,108(22):4853−4858. doi: 10.1021/jp031339l
    [25]
    CHEN Z W, YIN J J, ZHANG Y, et al. Dualenzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity[J]. Acs Nano,2012,6(5):4001−4012. doi: 10.1021/nn300291r
    [26]
    王杨. 铁基纳米酶的研究进展[J]. 安徽化工,2020,46(2):4−11. [WANG Yang. Study progress of iron-based nanozymes[J]. Anhui Chemical Industry,2020,46(2):4−11. doi: 10.3969/j.issn.1008-553X.2020.02.002
    [27]
    PENG F, ZHANG Y, GU N, et al. Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles[J]. Chinese Chemical Letters,2008,19(6):730−733. doi: 10.1016/j.cclet.2008.03.021
    [28]
    LIU Y, GAO P, HUANG C, et al. Shape and size-dependent catalysis activities of ironterephthalic acid metal-organic frameworks[J]. Science China Chemistry,2015,58(10):1553−1560. doi: 10.1007/s11426-015-5406-x
    [29]
    LIU B, LIU J. Surface modification of nanozymes[J]. Nano Research,2017,10(4):1125−1148. doi: 10.1007/s12274-017-1426-5
    [30]
    FAN K, WANG H, XI J, et al. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site[J]. Chemical Communications,2017,53(2):424−427. doi: 10.1039/C6CC08542C
    [31]
    REN H, MA T, ZHAO J, et al. VC-functionalized Fe3O4 nanocomposites as peroxidase-like mimetics for H2O2 and glucose sensing[J]. Chemical Research in Chinese Universities,2018,34(2):260−268. doi: 10.1007/s40242-018-7289-9
    [32]
    NAFISEHB, ALIREZA K, JAVAD H, et al. Sensitive biosensing of organophosphate pesticides using enzyme mimics of magnetic ZIF-8[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,209:118−125. doi: 10.1016/j.saa.2018.10.039
    [33]
    武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展,2021,33(1):42−51. [WU Jiangjiexing, WEI Hui. Efficient design strategies for nanozymes[J]. Progress in Chemistry,2021,33(1):42−51.
    [34]
    LEE Y, GARCIA M A, FREY H N A, et al. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles[J]. Angewandte Chemie International Edition,2010,49(7):1271−1274. doi: 10.1002/anie.200906130
    [35]
    HUANG F, WANG J, CHEN W, et al. Synergistic peroxidase-like activity of CeO2 coated hollow Fe3O4 nanocomposites as an enzymatic mimic for low detection limit of glucose[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,83:40−49. doi: 10.1016/j.jtice.2017.12.011
    [36]
    刘建慧, 孙鑫, 刘希光, 等. 果蔬中农药残留现状及检测技术的研究发展[J]. 食品研究与开发,2014,35(15):119−122. [LIU Jianhui, SUN Xin, LIU Xiguang, et al. The present situation of pesticide residues in vegetables and fruits and the progress of detection technique[J]. Food Research and Development,2014,35(15):119−122. doi: 10.3969/j.issn.1005-6521.2014.15.034
    [37]
    张珊珊, 吴远高. 农药残留对食品安全的影响及应对策略分析[J]. 现代食品,2020(20):215−217. [ZHANG Shanshan, WU Yuangao. Analysis on the influence of pesticide residue on food safety and countermeasures[J]. Modern Food,2020(20):215−217.
    [38]
    GUAN G J, YANG L, ZHANG Z P, et al. Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides[J]. Analytical Chemistry,2012,84(21):9492−9497. doi: 10.1021/ac302341b
    [39]
    LIANG M M, FAN K L, YAN X Y, et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent[J]. Analytical Chemistry,2013,85(1):308−312. doi: 10.1021/ac302781r
    [40]
    WANG Y L, SUN Y J, LI Z, et al. A colorimetric biosensor using Fe3O4 nanoparticles for highly sensitive and selective detection of tetracyclines[J]. Sensors and Actuators B-Chemical,2016,236:621−626. doi: 10.1016/j.snb.2016.06.029
    [41]
    陈祥明, 李飞, 林妍, 等. 制备Fe3O4纳米酶用于检测食品中四环素类抗生素的含量[J]. 食品安全质量检测学报,2019,10(2):434−439. [CHEN Xiangming, LI Fei, LIN Yan, et al. Preparation of Fe3O4 nanozyme for detection of tetracycline antibiotics in foods[J]. Journal of Food Safety & Quality,2019,10(2):434−439. doi: 10.3969/j.issn.2095-0381.2019.02.025
    [42]
    黄昭, 曹亚男, 李跑, 等. 表面等离子体共振传感器在食品安全检测中的应用[J]. 食品科学,2020,41(13):276−282. [HUANG Zhao, CAO Yanan, LI Pao, et al. Application of surface plasma resonance sensor in food safety inspection: A review[J]. Food Science,2020,41(13):276−282. doi: 10.7506/spkx1002-6630-20190630-418
    [43]
    KIM Y S, JURNG J. A simple colorimetric assay for the detection of metal ions based on the peroxidase-like activity of magnetic nanoparticles[J]. Sensors and Actuators B-Chemical,2013,176:253−257. doi: 10.1016/j.snb.2012.10.052
    [44]
    杨文平, 吴远根. 基于Fe3O4过氧化物酶活性的Cd2+和Pb2+比色传感器[J]. 生物技术进展,2019,9(6):611−619. [YANG Wenping, WU Yuangen. Colormetric sensors for Cd2+ and Pb2+ detection based on the peroxidase activity of Fe3O4[J]. Current Biotechnology,2019,9(6):611−619.
    [45]
    CHRISTUS AAB, PANNEERSELVAM P, RAVIKUMAR A, et al. Colorimetric determination of Hg(II) sensor based on magnetic nanocomposite (Fe3O4@ZIF-67) acting as peroxidase mimics[J]. Journal of Photochemistry and Photobiology A-Chemistry,2018,364:715−724. doi: 10.1016/j.jphotochem.2018.07.009
    [46]
    范蕊, 王文文, 卢彬, 等. 食源性致病微生物快速检测技术的发展趋势及研究进展[J]. 现代食品,2021(2):180−183. [FAN Rui, WANG Wenwen, LU Bin, et al. The development trend and research progress of food-borne pathogenic microorganisms rapid detection technology[J]. Modern Food,2021(2):180−183.
    [47]
    焦振泉, 郭云昌, 刘秀梅, 等. 食源性致病菌检测方法研究进展——Ⅰ. 传统检测方法[J]. 中国食品卫生杂志,2007(1):58−62. [JIAO Zhenquan, GUO Yunchang, LIU Xiumei, et al. Current progress in methods for detection of foodborne pathogens part 1: Traditional detection methods[J]. Chinese Journal of Food Hygiene,2007(1):58−62. doi: 10.3969/j.issn.1004-8456.2007.01.018
    [48]
    PARK J Y, JEONG H Y, PARK T J, et al. Colorimetric detection system for salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers[J]. Journal of Nanomaterials, 2015: 527126.
    [49]
    ZHANG Lisha, HUANG Ru, LIU Weipeng, et al. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification[J]. Biosensors and Bioelectronics,2016,86:1−7. doi: 10.1016/j.bios.2016.05.100
    [50]
    YAO S, ZHAO C, LI J, et al. Colorimetric immunoassay for the detection of Staphylococcus aureus by using magnetic carbon dots and sliver nanoclusters as o-phenylenediamine-oxidase mimetics[J]. Food Analytical Methods,2020,13(4):833−838. doi: 10.1007/s12161-019-01683-5
    [51]
    DUAN N, WU S J, XU B C, et al. Magnetic nanoparticles-based aptasensor using gold nanoparticles as colorimetric probes for the detection of Salmonella typhimurium[J]. Analytical Sciences,2016,32(4):431−436. doi: 10.2116/analsci.32.431
    [52]
    MA X Y, SONG L J, WANG Z P, et al. A novel colorimetric detection of S-typhimurium based on Fe3O4 magnetic nanoparticles and gold nanoparticles[J]. Food Analytical Methods,2017,10(8):2735−2742. doi: 10.1007/s12161-017-0819-0
    [53]
    SADSRI V, HOVEN V P, NONGKHAI P N, et al. Simple colorimetric assay for Vibrio parahaemolyticus detection using aptamer-functionalized nanoparticles[J]. ACS Omega,2020,5(34):21437−21442. doi: 10.1021/acsomega.0c01795
    [54]
    SUAIFAN G, ZOUROB M. Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157: H7[J]. Biosensors & Bioelectronics,2017,92:702−708.
    [55]
    张威, 郭丹, 兰伟, 等. 液体乳中三聚氰胺的快速检测产品评价研究[J]. 食品安全质量检测学报,2020,11(22):8533−8539. [ZHANG Wei, GUO Dan, LAN Wei, et al. Evaluation of rapid detection products for melamine in liquid milk[J]. Journal of food safety & quality,2020,11(22):8533−8539.
    [56]
    DING N, YAN N, CHEN X G, et al. Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles-H2O2-ABTS detection system[J]. Analytical Chemistry,2010,82(13):5897−5899. doi: 10.1021/ac100597s
    [57]
    马艳飞, 俞晨飞, 陈兴国, 等. 基于Fe3O4磁性纳米颗粒的类过氧化氢酶性质可视化测定邻苯二酚[J]. 分析科学学报,2014,30(5):709−712. [MA Yanfei, YU Chenfei, CHEN Xingguo, et al. A novel visual determination of catechol based on Fe3O4 magnetite nanoparticles as peroxidase mimetics[J]. Journal of Analytical Science,2014,30(5):709−712.
    [58]
    徐军军, 吴甜甜, 席慧婷, 等. 一种新型过氧化氢传感器的构建及其在牛奶中的应用[J]. 食品工业科技,2020,41(22):253−259. [XU Junjun, WU Tiantian, XI Huiting, et al. Construction of a novel hydrogen peroxide sensor and its application in milk[J]. Science and Technology ofFood Industry,2020,41(22):253−259.
    [59]
    DING Yanan, YANG Baochan, LIU Hao, et al. FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2[J]. Sensors and Actuators B:Chemical,2018,259:775−783. doi: 10.1016/j.snb.2017.12.115
    [60]
    WANG C Q, QIAN J, HUANG X Y, et al. Colorimetric aptasensing of ochratoxin a using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator[J]. Biosensors & Bioelectronics,2016,77:1183−1191.
  • Cited by

    Periodical cited type(7)

    1. 衣秀娟,陈浩,陈伟. 纳米酶在食源性病原体检测中的应用研究进展. 食品安全导刊. 2025(04): 162-167 .
    2. 吴敏,李光蓉. 食品安全检测中的纳米技术应用. 实验室检测. 2025(04): 1-4 .
    3. 颜红印. 纳米酶构效关系及在食品检测中的应用. 中国食品工业. 2024(11): 116-118 .
    4. 孙学景,卜文华. 基于指纹图谱的大米智能鉴别研究. 粮食与饲料工业. 2023(06): 60-64 .
    5. 张晓琳. 食品安全现状及食品安全检测技术应用. 食品安全导刊. 2022(08): 176-178 .
    6. 魏兴昀. 生物技术在食品安全检测中的应用分析. 现代食品. 2022(07): 113-115 .
    7. 郎爽,贾丽,周慧娟,冯月超,李杨,冯海静. 基于金纳米粒子的比色法在食品安全检测中的应用. 食品安全质量检测学报. 2022(17): 5586-5594 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (291) PDF downloads (37) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return