Citation: | LI Jiayin, LUO Lei, XIONG Yingzi, et al. Application of Magnetic Nanoenzyme Colorimetric Technology in Food Safety Detection[J]. Science and Technology of Food Industry, 2022, 43(5): 416−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030042. |
[1] |
李芙蓉, 向发椿, 曹丽萍, 等. 纳米酶在食品检测中的应用研究进展[J/OL]. 食品科学: 1−18 [2021-12-21]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210205.1437.008.html.
LI Furong, XIANG Fachun, CAO Liping, et al. Recent advances and applications of nanozymes in food assay[J/OL]. Food Science: 1−18 [2021-12-21]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210205.1437.008.html.
|
[2] |
张娟娟. 我国食品安全快速检测技术发展现状探讨[J]. 现代食品,2019(8):166−168. [ZHANG Juanjuan. Discussion on the development status of rapid food safety detection technology in China[J]. Modern Food,2019(8):166−168.
|
[3] |
MASIA A, SUAREZ M M, PICO Y, et al. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review[J]. Analytica Chimica Acta,2016,936:40−61. doi: 10.1016/j.aca.2016.07.023
|
[4] |
刘硕, 郭培源, 杨昆程, 等. 色谱技术、光谱分析法和生物检测技术在食品安全检测方面的应用进展[J]. 食品安全质量检测学报,2015,6(8):3217−3223. [LIU Shuo, GUO Peiyuan, YANG Kuncheng, et al. Progress in food safety detection using chromatographic techniques, spectroscopic techniques, and biological detection technology[J]. Journal of Food Safety & Quality,2015,6(8):3217−3223.
|
[5] |
李蕾, 李文进, 杨阳, 等. 表面等离子共振传感器快速检测农药残留的研究进展[J]. 食品安全质量检测学报,2013,4(2):321−327. [LI Lei, LI Wenjin, YANG Yang, et al. Research progress on the detection of pesticide residues by surface plasmon resonance sensor[J]. Journal of Food Safety & Quality,2013,4(2):321−327.
|
[6] |
张琳. 快速检测技术在果蔬检测中的应用分析[J]. 中国果菜,2020,40(12):29−31,35. [ZHANG Lin. Analysis on the application of rapid detection technology in the detection of fruits and vegetables[J]. China Fruit & Vegetable,2020,40(12):29−31,35.
|
[7] |
LIN Y H, REN J S, QU X G, et al. Catalytically active nanomaterials: A promising candidate for artificial enzymes[J]. Accounts of Chemical Research,2014,47(4):1097−1105.
|
[8] |
罗成, 李艳, 龙建纲, 等. 纳米材料模拟酶的应用研究进展[J]. 中国科学:化学,2015,45(10):1026−1041. [LUO Cheng, LI Yan, LONG Jiangang, et al. Recent advances in applications of nanoparticles as enzyme mimetics[J]. Scientia Sinica (Chimica),2015,45(10):1026−1041.
|
[9] |
MOHSINA H, KHALILR. Potential applications of peroxidases[J]. Food Chemistry,2009,115(4):1177−1186. doi: 10.1016/j.foodchem.2009.02.035
|
[10] |
李俊容, 沈爱国, 胡继明, 等. 纳米酶及其分析检测应用研究进展[J]. 应用化学,2016,33(11):1245−1252. [LI Junrong, SHEN Aiguo, HU Jiming, et al. Research progress of nanozymes and its application in analysis[J]. Chinese Journal of Applied Chemistry,2016,33(11):1245−1252. doi: 10.11944/j.issn.1000-0518.2016.11.160327
|
[11] |
ZHANG X L, LI G L, WU D, et al. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy[J]. Biosensors and Bioelectronics,2019,137:178−198. doi: 10.1016/j.bios.2019.04.061
|
[12] |
HE W W, WAMER W, YIN J J, et al. Enzyme-like activity of nanomaterials[J]. Journal of Environmental Science and Health Part C-environmental Carcinogenesis & Ecotoxicology Reviews,2014,32(4):186−211.
|
[13] |
BRESLOW R, OVERMAN L E. An "artificial enzyme" combining a metal catalytic group and a hydrophobic binding cavity[J]. Journal of the American Chemical Society,1970,92(4):1075−1077. doi: 10.1021/ja00707a062
|
[14] |
MANEA F, HOUILLON FB, PASQUATO L, et al. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts[J]. Angewandte Chemie-International Edition,2004,43(45):6165−6169. doi: 10.1002/anie.200460649
|
[15] |
罗成, 李艳, 龙建纲, 等. 四氧化三铁纳米颗粒过氧化物酶样活性的应用[J]. 科学通报,2015,60(35):3478−3488. [LUO Cheng, LI Yan, LONG Jiangang, et al. Applications of iron oxide nanoparticles as peroxidase mimetics[J]. Chinese Science Bulletin,2015,60(35):3478−3488.
|
[16] |
HU Y, WANG J L, WU Y G, et al. A simple and rapid chemosensor for colorimetric detection of dimethoate pesticide based on the peroxidase-mimicking catalytic activity of gold nanoparticles[J]. Analytical Methods,2019,11(41):5337−5347. doi: 10.1039/C9AY01506J
|
[17] |
SONG Y J, QU K G, ZHAO C, et al. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Advanced Materials,2010,22(19):2206−2210. doi: 10.1002/adma.200903783
|
[18] |
TAN H L, LI Q, ZHOU Z C, et al. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity[J]. Analytica Chimica Acta,2015,856:90−95.
|
[19] |
柳晶鑫, 徐江艳, 蒋红梅, 等. 磁纳米材料在环境污染物分析与去除研究中的应用[J]. 分析试验室,2020,39(11):1241−1253. [LIU Jingxin, XU Jiangyan, JIANG Hongmei, et al. Application of magnetic nanomaterials in the analysis and removal of environmental polltants[J]. Chinese Journal of Analysis Laboratory,2020,39(11):1241−1253.
|
[20] |
尉枫, 韩晓军, 等. 纳米酶及其在生物医学检测领域的研究进展[J]. 分析化学,2021,49(4):581−592. [WEI Feng, HAN Xiaojun. Nanozymes and their application progress in biomedical detection[J]. Chinese Journal of Analytical Chemistry,2021,49(4):581−592. doi: 10.1016/S1872-2040(21)60092-0
|
[21] |
GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology,2007,2(9):577−583. doi: 10.1038/nnano.2007.260
|
[22] |
高利增, 阎锡蕴, 等. 纳米酶的发现与应用[J]. 生物化学与生物物理进展,2013,40(10):892−902. [GAO Lizeng, YAN Xiyun. Discovery and current application of nanozyme[J]. Progress in Biochemistry and Biophysics,2013,40(10):892−902.
|
[23] |
马龙, 范克龙. 纳米酶和铁蛋白新特性的发现和应用[J]. 自然杂志,2020,42(1):1−11. [MA Long, FAN Kelong. The finding and application of the novel properties of nanozyme and ferritin[J]. Chinese Journal of Nature,2020,42(1):1−11. doi: 10.3969/j.issn.0253-9608.2020.01.001
|
[24] |
PEREZ-BENITO JF. Iron(III)-hydrogen peroxide reaction: Kinetic evidence of a hydroxyl-mediated chain mechanism[J]. Journal of Physical Chemistry A,2004,108(22):4853−4858. doi: 10.1021/jp031339l
|
[25] |
CHEN Z W, YIN J J, ZHANG Y, et al. Dualenzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity[J]. Acs Nano,2012,6(5):4001−4012. doi: 10.1021/nn300291r
|
[26] |
王杨. 铁基纳米酶的研究进展[J]. 安徽化工,2020,46(2):4−11. [WANG Yang. Study progress of iron-based nanozymes[J]. Anhui Chemical Industry,2020,46(2):4−11. doi: 10.3969/j.issn.1008-553X.2020.02.002
|
[27] |
PENG F, ZHANG Y, GU N, et al. Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles[J]. Chinese Chemical Letters,2008,19(6):730−733. doi: 10.1016/j.cclet.2008.03.021
|
[28] |
LIU Y, GAO P, HUANG C, et al. Shape and size-dependent catalysis activities of ironterephthalic acid metal-organic frameworks[J]. Science China Chemistry,2015,58(10):1553−1560. doi: 10.1007/s11426-015-5406-x
|
[29] |
LIU B, LIU J. Surface modification of nanozymes[J]. Nano Research,2017,10(4):1125−1148. doi: 10.1007/s12274-017-1426-5
|
[30] |
FAN K, WANG H, XI J, et al. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site[J]. Chemical Communications,2017,53(2):424−427. doi: 10.1039/C6CC08542C
|
[31] |
REN H, MA T, ZHAO J, et al. VC-functionalized Fe3O4 nanocomposites as peroxidase-like mimetics for H2O2 and glucose sensing[J]. Chemical Research in Chinese Universities,2018,34(2):260−268. doi: 10.1007/s40242-018-7289-9
|
[32] |
NAFISEHB, ALIREZA K, JAVAD H, et al. Sensitive biosensing of organophosphate pesticides using enzyme mimics of magnetic ZIF-8[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,209:118−125. doi: 10.1016/j.saa.2018.10.039
|
[33] |
武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展,2021,33(1):42−51. [WU Jiangjiexing, WEI Hui. Efficient design strategies for nanozymes[J]. Progress in Chemistry,2021,33(1):42−51.
|
[34] |
LEE Y, GARCIA M A, FREY H N A, et al. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles[J]. Angewandte Chemie International Edition,2010,49(7):1271−1274. doi: 10.1002/anie.200906130
|
[35] |
HUANG F, WANG J, CHEN W, et al. Synergistic peroxidase-like activity of CeO2 coated hollow Fe3O4 nanocomposites as an enzymatic mimic for low detection limit of glucose[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,83:40−49. doi: 10.1016/j.jtice.2017.12.011
|
[36] |
刘建慧, 孙鑫, 刘希光, 等. 果蔬中农药残留现状及检测技术的研究发展[J]. 食品研究与开发,2014,35(15):119−122. [LIU Jianhui, SUN Xin, LIU Xiguang, et al. The present situation of pesticide residues in vegetables and fruits and the progress of detection technique[J]. Food Research and Development,2014,35(15):119−122. doi: 10.3969/j.issn.1005-6521.2014.15.034
|
[37] |
张珊珊, 吴远高. 农药残留对食品安全的影响及应对策略分析[J]. 现代食品,2020(20):215−217. [ZHANG Shanshan, WU Yuangao. Analysis on the influence of pesticide residue on food safety and countermeasures[J]. Modern Food,2020(20):215−217.
|
[38] |
GUAN G J, YANG L, ZHANG Z P, et al. Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides[J]. Analytical Chemistry,2012,84(21):9492−9497. doi: 10.1021/ac302341b
|
[39] |
LIANG M M, FAN K L, YAN X Y, et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent[J]. Analytical Chemistry,2013,85(1):308−312. doi: 10.1021/ac302781r
|
[40] |
WANG Y L, SUN Y J, LI Z, et al. A colorimetric biosensor using Fe3O4 nanoparticles for highly sensitive and selective detection of tetracyclines[J]. Sensors and Actuators B-Chemical,2016,236:621−626. doi: 10.1016/j.snb.2016.06.029
|
[41] |
陈祥明, 李飞, 林妍, 等. 制备Fe3O4纳米酶用于检测食品中四环素类抗生素的含量[J]. 食品安全质量检测学报,2019,10(2):434−439. [CHEN Xiangming, LI Fei, LIN Yan, et al. Preparation of Fe3O4 nanozyme for detection of tetracycline antibiotics in foods[J]. Journal of Food Safety & Quality,2019,10(2):434−439. doi: 10.3969/j.issn.2095-0381.2019.02.025
|
[42] |
黄昭, 曹亚男, 李跑, 等. 表面等离子体共振传感器在食品安全检测中的应用[J]. 食品科学,2020,41(13):276−282. [HUANG Zhao, CAO Yanan, LI Pao, et al. Application of surface plasma resonance sensor in food safety inspection: A review[J]. Food Science,2020,41(13):276−282. doi: 10.7506/spkx1002-6630-20190630-418
|
[43] |
KIM Y S, JURNG J. A simple colorimetric assay for the detection of metal ions based on the peroxidase-like activity of magnetic nanoparticles[J]. Sensors and Actuators B-Chemical,2013,176:253−257. doi: 10.1016/j.snb.2012.10.052
|
[44] |
杨文平, 吴远根. 基于Fe3O4过氧化物酶活性的Cd2+和Pb2+比色传感器[J]. 生物技术进展,2019,9(6):611−619. [YANG Wenping, WU Yuangen. Colormetric sensors for Cd2+ and Pb2+ detection based on the peroxidase activity of Fe3O4[J]. Current Biotechnology,2019,9(6):611−619.
|
[45] |
CHRISTUS AAB, PANNEERSELVAM P, RAVIKUMAR A, et al. Colorimetric determination of Hg(II) sensor based on magnetic nanocomposite (Fe3O4@ZIF-67) acting as peroxidase mimics[J]. Journal of Photochemistry and Photobiology A-Chemistry,2018,364:715−724. doi: 10.1016/j.jphotochem.2018.07.009
|
[46] |
范蕊, 王文文, 卢彬, 等. 食源性致病微生物快速检测技术的发展趋势及研究进展[J]. 现代食品,2021(2):180−183. [FAN Rui, WANG Wenwen, LU Bin, et al. The development trend and research progress of food-borne pathogenic microorganisms rapid detection technology[J]. Modern Food,2021(2):180−183.
|
[47] |
焦振泉, 郭云昌, 刘秀梅, 等. 食源性致病菌检测方法研究进展——Ⅰ. 传统检测方法[J]. 中国食品卫生杂志,2007(1):58−62. [JIAO Zhenquan, GUO Yunchang, LIU Xiumei, et al. Current progress in methods for detection of foodborne pathogens part 1: Traditional detection methods[J]. Chinese Journal of Food Hygiene,2007(1):58−62. doi: 10.3969/j.issn.1004-8456.2007.01.018
|
[48] |
PARK J Y, JEONG H Y, PARK T J, et al. Colorimetric detection system for salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers[J]. Journal of Nanomaterials, 2015: 527126.
|
[49] |
ZHANG Lisha, HUANG Ru, LIU Weipeng, et al. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification[J]. Biosensors and Bioelectronics,2016,86:1−7. doi: 10.1016/j.bios.2016.05.100
|
[50] |
YAO S, ZHAO C, LI J, et al. Colorimetric immunoassay for the detection of Staphylococcus aureus by using magnetic carbon dots and sliver nanoclusters as o-phenylenediamine-oxidase mimetics[J]. Food Analytical Methods,2020,13(4):833−838. doi: 10.1007/s12161-019-01683-5
|
[51] |
DUAN N, WU S J, XU B C, et al. Magnetic nanoparticles-based aptasensor using gold nanoparticles as colorimetric probes for the detection of Salmonella typhimurium[J]. Analytical Sciences,2016,32(4):431−436. doi: 10.2116/analsci.32.431
|
[52] |
MA X Y, SONG L J, WANG Z P, et al. A novel colorimetric detection of S-typhimurium based on Fe3O4 magnetic nanoparticles and gold nanoparticles[J]. Food Analytical Methods,2017,10(8):2735−2742. doi: 10.1007/s12161-017-0819-0
|
[53] |
SADSRI V, HOVEN V P, NONGKHAI P N, et al. Simple colorimetric assay for Vibrio parahaemolyticus detection using aptamer-functionalized nanoparticles[J]. ACS Omega,2020,5(34):21437−21442. doi: 10.1021/acsomega.0c01795
|
[54] |
SUAIFAN G, ZOUROB M. Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157: H7[J]. Biosensors & Bioelectronics,2017,92:702−708.
|
[55] |
张威, 郭丹, 兰伟, 等. 液体乳中三聚氰胺的快速检测产品评价研究[J]. 食品安全质量检测学报,2020,11(22):8533−8539. [ZHANG Wei, GUO Dan, LAN Wei, et al. Evaluation of rapid detection products for melamine in liquid milk[J]. Journal of food safety & quality,2020,11(22):8533−8539.
|
[56] |
DING N, YAN N, CHEN X G, et al. Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles-H2O2-ABTS detection system[J]. Analytical Chemistry,2010,82(13):5897−5899. doi: 10.1021/ac100597s
|
[57] |
马艳飞, 俞晨飞, 陈兴国, 等. 基于Fe3O4磁性纳米颗粒的类过氧化氢酶性质可视化测定邻苯二酚[J]. 分析科学学报,2014,30(5):709−712. [MA Yanfei, YU Chenfei, CHEN Xingguo, et al. A novel visual determination of catechol based on Fe3O4 magnetite nanoparticles as peroxidase mimetics[J]. Journal of Analytical Science,2014,30(5):709−712.
|
[58] |
徐军军, 吴甜甜, 席慧婷, 等. 一种新型过氧化氢传感器的构建及其在牛奶中的应用[J]. 食品工业科技,2020,41(22):253−259. [XU Junjun, WU Tiantian, XI Huiting, et al. Construction of a novel hydrogen peroxide sensor and its application in milk[J]. Science and Technology ofFood Industry,2020,41(22):253−259.
|
[59] |
DING Yanan, YANG Baochan, LIU Hao, et al. FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2[J]. Sensors and Actuators B:Chemical,2018,259:775−783. doi: 10.1016/j.snb.2017.12.115
|
[60] |
WANG C Q, QIAN J, HUANG X Y, et al. Colorimetric aptasensing of ochratoxin a using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator[J]. Biosensors & Bioelectronics,2016,77:1183−1191.
|