FENG Chengfeng, CUI Wenyu, XIA Zhihui, et al. Research Progress in the Effects of Steam Explosion on Plant Polyphenols and Antioxidant Capacity[J]. Science and Technology of Food Industry, 2022, 43(4): 438−445. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020198.
Citation: FENG Chengfeng, CUI Wenyu, XIA Zhihui, et al. Research Progress in the Effects of Steam Explosion on Plant Polyphenols and Antioxidant Capacity[J]. Science and Technology of Food Industry, 2022, 43(4): 438−445. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020198.

Research Progress in the Effects of Steam Explosion on Plant Polyphenols and Antioxidant Capacity

More Information
  • Received Date: February 24, 2021
  • Available Online: December 09, 2021
  • Steam explosion, as a typical physical-chemical pretreatment technology, destroys the cell wall structure by instantaneous release of high-temperature and high-pressure steam, which promotes the release of plant active ingredients. Appropriate steam explosion pretreatment can significantly improve the extraction rate of free polyphenols, effectively promote the release of polyphenols, and improve the antioxidant capacity. In recent years, steam explosion was applied into the pretreatment of plants and their by-products, and it can significantly improve the extraction of natural active ingredients and enhance functional activity. The influence of steam explosion technology on the content and composition of bound polyphenols and free polyphenols in plants, and the influence on their antioxidant capacity in vitro are summarized in this paper. This would provide a guidance for the use of steam explosion in the food processing industry.
  • [1]
    XING C, WANG L J, WANG X Q. Recent studies on free and bound phenolic compounds in edible plants: A review[J]. Food Science,2020,41(5):266−275.
    [2]
    颜才植, 叶发银, 赵国华. 食品中多酚形态的研究进展[J]. 食品科学,2015,36(15):249−254. [YAN C Z, YE F Y, ZHAO G H. Research progress of polyphenol forms in food[J]. Food Science,2015,36(15):249−254. doi: 10.7506/spkx1002-6630-201515046
    [3]
    MASON W H. Process and apparatus for disintegration of wood and the like[P]. U. S Patent: 1578609, 1926-03-30.
    [4]
    GONG L X, HUANG L L, ZHANG Y. Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity[J]. Journal of Agricultural and Food Chemistry,2012,60(29):7177−7184. doi: 10.1021/jf301599a
    [5]
    YU Z D, ZHANG B L, YU F Q, et al. A real explosion: The requirement of steam explosion pretreatment[J]. Bioresource Technology,2012,121:335−341. doi: 10.1016/j.biortech.2012.06.055
    [6]
    ANTONIO SERRANO, FERNANDO G FERMOSO, BERNABÉ ALONSO-FARIÑAS, et al. Phenols recovery after steam explosion of olive mill solid waste and its influence on a subsequent biomethanization process[J]. Bioresource Technology,2017,243:169−178. doi: 10.1016/j.biortech.2017.06.093
    [7]
    FERRI M, HAPPEL A, ZANAROLI G, et al. Advances in combined enzymatic extraction of ferulic acid from wheat bran[J]. New Biotechnology,2019,56:38−45.
    [8]
    FRANCISCO P M, LORENA M A S, DIEGO L, et al. Steam explosion pretreatment to obtain eco-friendly building blocks from oil palm mesocarp fiber[J]. Industrial Crops and Products,2020,143:111907. doi: 10.1016/j.indcrop.2019.111907
    [9]
    LU H X, LIN X Y, HE B H, et al. Enhanced separation of cellulose from bamboo with a combined process of steam explosion pretreatment and alkaline-oxidative cooking[J]. Nordic Pulp and Paper Research Journal,2020,35(3):386−399. doi: 10.1515/npprj-2020-0007
    [10]
    MARQUES F P, SOARES A K L, LOMONACO D, et al. Steam explosion pretreatment improves acetic acid organosolv delignification of oil palm mesocarp fibers and sugarcane bagasse[J]. International Journal of Biological Macromolecules,2021,175:304−312. doi: 10.1016/j.ijbiomac.2021.01.174
    [11]
    QIN L Z, CHEN H Z. Enhancement of flavonoids extraction from fig leaf using steam explosion[J]. Industrial Crops and Products,2015,69:1−6. doi: 10.1016/j.indcrop.2015.02.007
    [12]
    LI W Z, ZHANG X L, HE X Q. Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics[J]. Food & Function,2020,11(5):4648−4658.
    [13]
    YU G W, GUO T T, HUANG Q D. Preparation of rapeseed oil with superhigh canolol content and superior quality characteristics by steam explosion pretreatment technology[J]. Food Science and Nutrition,2020,8(5):2271−2278. doi: 10.1002/fsn3.1502
    [14]
    DORADO C, CAMERON R G, MANTHEY J A. Study of static steam explosion of citrus sinensis juice processing waste for the isolation of sugars, pectic hydrocolloids, flavonoids, and peel oil[J]. Food and Bioprocess Technology,2019,12(8):1293−1303. doi: 10.1007/s11947-019-02300-3
    [15]
    CAMERON R G, CHAU H K, HOTCHKISS A T, et al. Recovery of pectic hydrocolloids and phenolics from huanglongbing related dropped citrus fruit[J]. Journal of the Science of Food & Agriculture,2017,97(13):4467−4475.
    [16]
    CUBERO-CARDOSO J, ANDRÉS MUOZ-ARJONA, TRUJILLO-REYES N, et al. Mesophilic semi-continuous anaerobic digestion of strawberry extrudate pretreated with steam explosion[J]. Foods,2020,9(12):2−11.
    [17]
    CHRISTINA DORADO, RANDALL G CAMERON, JOHN A MANTHEY, et al. Bench scale batch steam explosion of Florida red and white grapefruit juice processing residues[J]. Future Foods, 2021.
    [18]
    CHEN Y S, SHAN S R, CAO D M, et al. Steam flash explosion pretreatment enhances soybean seed coat phenolic profiles and antioxidant activity[J]. Food Chemistry,2020,319:126552. doi: 10.1016/j.foodchem.2020.126552
    [19]
    张善英, 郑丽丽, 艾斌凌, 等. 蒸汽爆破预处理对油茶籽水代法提油品质的影响[J]. 食品科学,2019,40(11):124−130. [ZHANG S Y, ZHENG L L, AI B L, et al. Effect of steam explosion pretreatment on quality of tea seed (Camellia oleifera Abel. ) oil obtained by aqueous extraction[J]. Food Science,2019,40(11):124−130. doi: 10.7506/spkx1002-6630-20180614-272
    [20]
    赵鹏成, 易军鹏, 李欣, 等. 花生壳木犀草素蒸汽爆破预处理工艺优化及结构分析[J]. 食品与机械,2019,35(7):181−186,192. [ZHAO P C, YI J P, LI X, et al. Optimization of steam explosion pretreatment of peanut shell and its effect on physicochemical properties of luteolin[J]. Food and Machinery,2019,35(7):181−186,192.
    [21]
    SUI W J, XIAO Y, LIU R, et al. Steam explosion modification on tea waste to enhance bioactive compounds' extractability and antioxidant capacity of extracts[J]. Journal of Food Engineering,2019,261:51−59. doi: 10.1016/j.jfoodeng.2019.03.015
    [22]
    唐宇, 张小利, 何晓琴, 等. 体外模拟胃肠消化过程中蒸汽爆破处理的苦荞麸皮的抗氧化及抗增殖活性[J]. 食品发酵与工业,2019,45(3):103−109. [TANG Y, ZHANG X L, HE X Q, et al. Antioxidant and antiproliferative activities of tartary buckwheat bran treated by steam explosion in simulated gastrointestinal digestion in vitro[J]. Food Fermentation and Industry,2019,45(3):103−109.
    [23]
    ÖZGE SEÇMELER, ÖZLEM GÜÇLÜ ÜSTÜNDAĞ, JUAN FERNÁNDEZ-BOLAÑOS, et al. Effect of subcritical water and steam explosion pretreatments on the recovery of sterols, phenols and oil from olive pomace[J]. Food Chemistry,2018,265:298−307. doi: 10.1016/j.foodchem.2018.05.088
    [24]
    ANTONIO LAMA-MUÑOZ, FÁTIMA RUBIO-SENENT, ALEJANDRA BERMÚDEZ-ORIA, et al. The use of industrial thermal techniques to improve the bioactive compounds extraction and the olive oil solid waste utilization[J]. Innovative Food Science and Emerging Technologies,2019,55:11−17. doi: 10.1016/j.ifset.2019.05.009
    [25]
    靳羽慧, 刘长忠, 徐响, 等. 蒸汽爆破对豆渣中大豆异黄酮的影响研究[J]. 中国粮油学报,2017,32(10):16−20,27. [JIN Y H, LIU C Z, XU X, et al. Effect of steam explosion treatment on soybean isoflavones of okara[J]. Journal of the Chinese Cereals and Oils Association,2017,32(10):16−20,27. doi: 10.3969/j.issn.1003-0174.2017.10.003
    [26]
    张棋, 易军鹏, 李欣, 等. 蒸汽爆破预处理对粉葛总黄酮及抗氧化性的影响[J]. 食品科学,2016,37(9):40−44. [ZHANG Q, YI J P, LI X, et al. Effect of steam explosion on total isoflavone content and antioxidant capacity of Puerariae thomsonii Radix[J]. Food Science,2016,37(9):40−44. doi: 10.7506/spkx1002-6630-201609008
    [27]
    GONG L, ZHANG Y, WANG J, et al. Change in health ingredients of whole tibetan hull-less barley after steam explosion and simulated digestion in vitro[J]. Journal of Food Processing & Preservation,2016,40(2):239−248.
    [28]
    SONG H D, YANG R J, ZHAO W, et al. Innovative assistant extraction of flavonoids from pine (Larix olgensis Henry) needles by high-density steam flash-explosion[J]. Journal of Agricultural and Food Chemistry,2014,62(17):3806−3812. doi: 10.1021/jf405412r
    [29]
    CHEN G Z, CHEN H Z. Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion[J]. Food Chemistry,2011,126(4):1934−1938. doi: 10.1016/j.foodchem.2010.12.025
    [30]
    LIU L Y, ZHAO M L, LIU X X, et al. Effect of steam explosion-assisted extraction on phenolic acid profiles and antioxidant properties of wheat bran[J]. Journal of the Science of Food and Agriculture,2016,96(10):3484−3491. doi: 10.1002/jsfa.7532
    [31]
    CHEN Y, ZHANG R, LIU C, et al. Enhancing antioxidant activity and antiproliferation of wheat bran through steam flash explosion[J]. Journal of Food Science & Technology,2016,53(7):3028−3034.
    [32]
    CONDE E, CARA C, MOURE A, et al. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning[J]. Food Chemistry,2009,114(3):806−812. doi: 10.1016/j.foodchem.2008.10.017
    [33]
    KUROSUMI A, SASAKI C, KUMADA K, et al. Novel extraction method of antioxidant compounds from Sasa palmata (Bean) Nakai using steam explosion[J]. Process Biochemistry,2007,42(10):1449−1453. doi: 10.1016/j.procbio.2007.06.007
    [34]
    STADLER R H, WELTI D H, STÄMPFLI A A, et al. Thermal decomposition of caffeic acid in model systems: Identification of novel tetraoxygenated phenylindan isomers and their stability in aqueous solution[J]. Journal of Agricultural and Food Chemistry,1996,44(3):898−905. doi: 10.1021/jf950411c
    [35]
    MOON J K, SHIBAMOTO T. Formation of volatile chemicals from thermal degradation of less volatile coffee components: Quinic acid, caffeic acid, and chlorogenic acid[J]. Journal of Agricultural and Food Chemistry,2010,58(9):5465−5470. doi: 10.1021/jf1005148
    [36]
    CHENG A W, HOU C Y, SUN J Y, et al. Effect of steam explosion on phenolic compounds and antioxidant capacity in adzuki beans[J]. Journal of the Science of Food and Agriculture,2020,100(12):4495−4503. doi: 10.1002/jsfa.10490
    [37]
    ARRIETA-BAEZ D, DORANTES-ÁLVAREZ D, MARTINEZ-TORRES R, et al. Effect of thermal sterilization on ferulic, coumaric and cinnamic acids: Dimerization and antioxidant activity[J]. Journal of the Science of Food and Agriculture,2012,92(13):2715−2720. doi: 10.1002/jsfa.5695
    [38]
    FIDDLER W, PARKER W E, WASSERMAN A E, et al. Thermal decomposition of ferulic acid[J]. Journal of Agricultural and Food Chemistry,1967,15(5):757−761. doi: 10.1021/jf60153a003
    [39]
    DAS A K, SINGH V. Antioxidative free and bound phenolic constituents in pericarp, germ and endosperm of Indian dent (Zea mays var. indentata) and flint (Zea mays var. indurata) maize[J]. Journal of Functional Foods,2015,13:363−374. doi: 10.1016/j.jff.2015.01.012
    [40]
    TANG Y, ZHANG B, LI X H, et al. Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and a-glucosidase and pancreatic lipase inhibitory effects[J]. Journal of Agricultural and Food Chemistry,2016,64(8):1712−1719. doi: 10.1021/acs.jafc.5b05761
    [41]
    ALSHIKH N, DE C A C, SHAHIDI F. Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage[J]. Journal of Functional Foods,2015,18:1022−1038. doi: 10.1016/j.jff.2015.05.018
    [42]
    SHAHIDI F, YEO J D. Insoluble-bound phenolics in food[J]. Molecules,2016,21(9):12−16.
    [43]
    NODA Y, ASADA C, SASAKI C, et al. Extraction method for increasing antioxidant activity of raw garlic using steam explosion[J]. Biochemistry Engineering Journal,2013,73(15):1−4.
    [44]
    YEO J D, SHAHIDI F. Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils[J]. Journal of Functional Foods,2017,38:716−722. doi: 10.1016/j.jff.2016.12.010
    [45]
    PARTHAPRATIM DAS, ROMINA B STOFFEL, MARIA C AREA, et al. Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin[J]. Biomass and Bioenergy,2019,120:350−358. doi: 10.1016/j.biombioe.2018.11.029
    [46]
    MANIET G, SCHMETZ Q, JACQUET N, et al. Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin[J]. Industrial Crops & Products,2017,99:79−85.
    [47]
    ZHAO S G, LI G D, ZHENG N, et al. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization[J]. Bioresource Technology,2018,253:244−251. doi: 10.1016/j.biortech.2018.01.024
    [48]
    任天宝, 高卫锴, 苏同福, 等. 瞬时弹射式蒸汽爆破处理生物质的能量模型及能耗理论分析[J]. 高压物理学报,2020,34(5):187−194. [REN T B, GAO W K, SU T F, et al. Energy model and theoretical analysis of energy consumption for instantaneous ejection steam explosion treatment of biomass[J]. Chinese Journal of High Pressure Physics,2020,34(5):187−194.
    [49]
    MRAD R, ROUPHAEL M, MAROUN R G, et al. Effect of expansion by “Intensification of Vaporization by Decompression to the Vacuum” (IVDV) on polyphenol content, expansion ratio, texture and color changes of Australian chickpea[J]. LWT-Food Science and Technology,2014,59:874−882. doi: 10.1016/j.lwt.2014.07.026
    [50]
    SUI W J, CHEN H Z. Extraction enhancing mechanism of steam exploded Radix astragali[J]. Process Biochemistry,2014,49(12):2181−2190. doi: 10.1016/j.procbio.2014.08.010
    [51]
    SUN S L, WEN J L, MA M G, et al. Structural features and antioxidant activities of degraded lingins from steam exploded bamboo stem[J]. Industrial Crops and Products,2014,56:128−136. doi: 10.1016/j.indcrop.2014.02.031
    [52]
    SULZENBACHER D, DENISE ATZMÜLLER, HAWE F, et al. Optimization of steam explosion parameters for improved biotechnological use of wheat straw[J]. Biomass Conversion and Biorefinery,2021:1−12. doi: 10.1007/s13399-020-01266-z
    [53]
    FERNÁNDEZ-BOLAÑOS J, FELIZÓN B, HEREDIA A, et al. Steam-explosion of olive stones: Hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose[J]. Bioresource Technology,2001,79(1):53−61. doi: 10.1016/S0960-8524(01)00015-3
    [54]
    刘蕊琪, 宋莲军, 沈玥, 等. 蒸汽爆破技术在食品大分子物质改性中的研究进展[J/OL]. 食品与发酵工业, 2021: 1−7.

    LIU R Q, SONG L J, SHEN Y, et al. Research progress of steam explosion technology in modification of food macromolecules [J/OL]. Food and Fermentation Industry, 2021: 1−7.https://doi.org/10.13995/j.cnki.11-1802/ts.027248.
    [55]
    TU J Q, LIU H P, SUN N X, et al. Optimization of the steam explosion pretreatment effect on total flavonoids content and antioxidative activity of seabuckthom pomace by response surface methodology[J]. Molecules,2019,24(1):1−9.
    [56]
    JUTTUPORN W, THIENGKAEW P, RODKLONGTAN A, et al. Ultrasound-assisted extraction of antioxidant and antibacterial phenolic compounds from steam-exploded sugarcane bagasse[J]. Sugar Technology,2018,20(5):599−608. doi: 10.1007/s12355-017-0582-y
    [57]
    方芳. 蒸汽爆破预处理对籽粒苋籽实抗氧化能力的影响[J]. 食品工业科技,2018,39(15):21−25,30. [FANG F. Effect of steam explosion treatment on amaranth seeds antioxidant capacity[J]. Food Industry Science and Technology,2018,39(15):21−25,30.
    [58]
    张瑞婷. 蒸汽爆破对麦麸多酚组成及其抗氧化活性的影响[D]. 郑州: 河南工业大学, 2016.

    ZHANG R T. The effect of steam explosion on the composition and antioxidant activity of wheat bran polyphenols[D]. Zhengzhou: Henan University of Technology, 2016.
    [59]
    易军鹏, 杨亚皇, 李欣, 等. 蒸汽爆破预处理对紫甘薯花色苷抗氧化性及抑菌性的影响[J]. 农产品加工,2019(10):26−30. [YI J P, YANG Y H, LI X, et al. Effects of steam explosion pretreatment on the antioxidant and antibacterial properties of purple sweet potato anthocyanins[J]. Agricultural Products Processing,2019(10):26−30.
    [60]
    HONG Y J, TOMAS-BARBERAN F A, KADER A A, et al. The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera)[J]. Journal of Agriculture and Food Chemistry,2006,54(6):2405−2411. doi: 10.1021/jf0581776
    [61]
    NODA Y, ASADA C, SASAKI C, et al. Effects of hydrothermal methods such as steam explosion and microwave irradiation on extraction of water soluble antioxidant materials from garlic husk[J]. Waste and Biomass Valorization,2019,10(11):3397−3402. doi: 10.1007/s12649-018-0353-3
    [62]
    HU L, GUO J M, ZHU X W, et al. Effect of steam explosion on nutritional composition and antioxidative activities of okra seed and its application in gluten-free cookies[J]. Food Science & Nutrition,2020,8(8):4409−4421.
    [63]
    HONG Q Y, CHEN G J, WANG Z R, et al. Impact of processing parameters on physicochemical properties and biological activities of Qingke (highland hull-less barley) treated by steam explosion[J]. Journal of Food Processing and Preservation, 2020, 44(10): e14793.
    [64]
    KONG F, WANG L, GAO H, et al. Process of steam explosion assisted superfine grinding on particle size, chemical composition and physico-chemical properties of wheat bran powder[J]. Powder Technology,2020,371:154−160. doi: 10.1016/j.powtec.2020.05.067
    [65]
    ZHANG S Y, PAN Y G, ZHENG L L, et al. Application of steam explosion in oil extraction of camellia seed (Camellia oleifera Abel.) and evaluation of its physicochemical properties, fatty acid, and antioxidant activities[J]. Food Science & Nutrition,2019,7(3):1004−1016.
    [66]
    LIU B G, CHEN Y S, MO H Z, et al. Catapult steam explosion significantly increases cellular antioxidant and anti-proliferative activities of Adinandra nitida leaves[J]. Journal of Functional Foods,2016,23:423−431. doi: 10.1016/j.jff.2016.01.006
    [67]
    TAN B L, NORHAIZAN M E, YEAP S K, et al. Water extract of brewers' rice induces antiproliferation of human colorectal cancer (HT-29) cell lines via the induction of apoptosis[J]. European Review for Medical & Pharmacological Sciences,2015,19(6):1022−1029.
    [68]
    OKARTER N, LIU C S, SORRELLS M E, et al. Phytochemical content and antioxidant activity of six diverse varieties of whole wheat[J]. Food Chemistry, 2010, 119(1): 249-257.
    [69]
    WAN H X, LIU D, YU X Y, et al. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants[J]. Food Chemistry, 2015, 175: 601-608.
    [70]
    WOLFE K L, LIU R H. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay[J]. Journal of Agricultural and Food Chemistry,2008,56(18):8404−8411. doi: 10.1021/jf8013074
  • Cited by

    Periodical cited type(9)

    1. 徐嘉欣,罗哲,何安,黄潘钿,沈金鹏,郭俊斌,苗建银. 南珠贝壳珍珠层源抗氧化肽的制备及对酪氨酸酶的抑制活性. 食品工业科技. 2025(06): 242-251 . 本站查看
    2. 刘洋,白家瑞,周先加,毛海峰. 牦牛皮酶法脱毛工艺优化及其对食用品质的影响. 中国皮革. 2024(04): 38-44 .
    3. 和金泽,崔浩然,李钰芳,郑文涛,彭清雅,李丽,黄艾祥. 中甸牦牛乳酪蛋白源生物活性肽的鉴定及抗氧化活性. 乳业科学与技术. 2024(06): 1-7 .
    4. 王增丽,付坚,何同,王雪峰,范江平,黄艾祥. 青刺果粕抗氧化肽的酶法制备工艺优化及体外抗氧化活性分析. 现代食品科技. 2024(12): 49-56 .
    5. 李玉婷,张天宝,杜慧玲,郭继虎,张鸣慧,亢芬,张佳乐. 黄粉虫酶解产物的制备及活性研究. 食品科技. 2023(04): 245-251 .
    6. 杨宝强,刘生杰. 响应面法优化猴头菇蛋白抗氧化肽工艺及抗运动疲劳活性研究. 粮食与油脂. 2023(05): 142-147 .
    7. 马凤,叶灏铎,夏珍,徐燕,孙世利,曹庸,苗建银. 英红九号茶蛋白ACE抑制肽的制备、氨基酸组成及不同超滤组分的活性评价. 现代食品科技. 2023(07): 237-245 .
    8. 张丙云,蔡早宁,王珈玮,潘立超,郭晓鹏,范文广,任海伟. 基于文献计量分析的动物源活性肽领域的态势分析. 食品工业科技. 2022(08): 320-328 . 本站查看
    9. 康澳,巩思佳,陈可菁,李子豪,郑雪韵,陈冰冰,陈文浩,曹庸,苗建银. 固态发酵制备辣木叶活性肽及其抗氧化活性. 现代食品科技. 2022(06): 105-115 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (399) PDF downloads (53) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return